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O Natura omnium Mater Dea, artificiosa admodum Dea,

Suscitatrix honorabilis, multa creans, Divina Regina,

Omnidomans, indomita gubernatrix, ubique splendens.

—Hymn of Orpheus in Robert Boyle (1686/1996, 52)
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Looking over my manuscript in its entirety, I found it more sprawling than 

I would have liked and less neatly argued than you might expect. Then it 

struck me that this fault is almost an inevitable one since the overarching argu-

ment of the book is that living nature, in its excess of complications, cannot 

be known as such. Scientific knowledge is necessarily produced by simplifica-

tion, by pruning, taming, suppressing, dominating complexity—choose the 

metaphor at whichever degree of Baconian intensity you like. The brain, since 

it is a hypercomplex object (or process) makes the presence of this struggle most 

obvious to the observer of scientific practice. To present my argument in a neat 

and tidy package that masks as best as possible my own efforts to grapple with 

the complexity of the subject matter, to conform to the intellectual/aesthetic 

standard conditioned by a multigenerational conceit that nature is simple and 

truths clearly expressible, to write as if nothing were residual or refractory to my 

single-minded line of thought would, I submit, be self-undermining. “Sorry, 

not sorry” for the imperfect state of this book: had I more time, I could have 

made it shorter (and more cogent), but that would have been dishonest.

In the course of this project, I came to realize that science, as we know it, 

is founded on an essentially theological belief in the rational intelligibility 

of nature, which entitles seekers after the truths of nature to employ sim-

plicity as their guide. When Nietzsche heralded the Death of God, he had 

the monotheism of Being in mind—the theology that denies ultimate real

ity, and hence value, to the ever-changing, ever-complicating appearances 

of the natural world. As irreligious and self-avowedly naturalistic science 

and philosophy of science were in the century after Nietzsche, the basics of 

the belief system were not updated. Beauty, truth, and parsimony were left 

high on their pedestals. Engineers are now on the scene to smash these idols. 

This book is the product of a historical rupture that has become visible in 

the twenty-first century between a classical scientific approach, which seeks 

Preface
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x	 Preface

simple, intelligible principles underlying the manifest complexity of nature, 

and a data-driven engineering approach, which is rather too happy to give 

up on the search for elegant, explanatory laws and models.1

These engineers have taken to the mindset of unrestrained Will to Power. 

My wish, instead, has been to draw out another lesson from the recognition 

of the failures and limitations of the classical approach—a lesson of theo-

retical and practical humility. Although the stated aim of the book is not to 

reform neuroscience or offer advice to neuroscientists, but rather to interpret 

their work, I have not always kept myself within the bounds of description 

of scientific practice. The prescriptive voice—on the folly of overestimating 

our comprehension of nature in itself, in its full complexity—does frequently 

come out. What greater hubris, then, than headlong pursuit of interventions 

without even the attempt at understanding that which is being altered? Hubris 

or humility is precisely the juncture that is faced in the twilight of the old 

theology—too important a decision to be left to the scientists and technologists.

Even when writing an academic book, one likes to think that it will be 

read by as many people as possible. I have tried to accommodate at least 

three audiences: philosophers, neuroscientists, and any other interested 

parties. This ambition has led me sometimes to neglect philosophical and 

technical intricacies. I beg the reader’s indulgence. When describing inva-

sive and in many cases painful experiments on animals, I have followed the 

convention of a detached style of writing because it seemed that to do other

wise would cause an unnecessary distraction. This is not a reflection of my 

actual feelings, but I feel that it deserves some apology, to whom I know not.

Edinburgh, September 2022

Books, even books about history, are solid things, susceptible to the gnaw-

ing ants of time. I have added just a few references to work published since 

2022, when the manuscript was essentially completed. My belief is that we 

can extrapolate gracefully from the content as it stands, even though the 

last decade seems an age away from neuroscience and technology today. For 

those seeking the up to date and the ephemeral, there is always the internet.

Bretby, July 2023

1.  See Breiman (2001). For this division in a nutshell, consider the clash between Noam 
Chomsky and Peter Norvig over statistical language models (Katz 2012; Norvig 2012).
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My first conception of this project was that I would expand upon my previ-

ous publications on computational explanation in neuroscience. Thanks to 

a sabbatical supported by the University of Pittsburgh for the duration of 

2018, I had the time for deeper reading into early twentieth-century phi-

losophy of science and theoretical neurology, and this led to a substantial 

turnaround in my own views on the meaning and status of computational 

models of the brain. I am grateful to students and colleagues in the History 

and Philosophy of Science and Philosophy departments at the University of 

Pittsburgh, and Carnegie Mellon University, for queries and conversations 

that helped me find my way in this new endeavor: in particular, those who 

joined the History of Neuroscience seminar in 2017, including my cote-

acher Paolo Palmieri; members of the 2018 Perspectivism reading group, 

organized by Sandra Mitchell; and students in my 2019 seminar on scien-

tific realism. This project benefited greatly from my attendance of Stephen 

Engstrom’s 2018 Kant seminar, though, naturally, I am fully responsible for 

the many deviations from the true path that my book contains.

Early versions of this material were exposed to generous criticism on 

many occasions. My gratitude extends to audiences at the following events 

(I hope I have not forgotten any): the 2016 workshop on Grounding Sen-

sible Qualities at Berkeley; 2017 workshop on Analogical Reasoning at LMU 

Munich; the 2017 Rutgers Center for Cognitive Science (RuCCS) Colloquia 

Series; the 2017 Philosophy colloquium at the University of Birmingham; 

PPN (Philosophy, Psychology and Neuroscience) seminars at the University 

of Glasgow in 2017 and 2020; the 2017 Philosophy colloquium at the Uni-

versity of Cincinnati; the 2017 Graduate Conference at the University of 

Waterloo; the 2018 lunchtime speaker series at the Institute of Philosophy, 
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The truth is, there’s not anything that has, and doth still delude most men’s 

understandings more, than that they do not enough consider the variety of 

nature’s actions . . . ; preferring art and experiments, before reason; which makes 

them stick so close to some particular opinions, and particular sorts of motions or 

parts; as if there were no more motions, parts, or creatures in nature, than what 

they see and find out by their artificial experiments. Thus the variety of nature, 

is a stumbling block to most men . . . : and how should it be otherwise, since 

nature’s actions are infinite, and man’s understanding finite?

—Margaret Cavendish (1668/2001, 99) 

1.1  The Most Complicated Thing

Allow me to overwhelm you with details. Around 85 billion electrically excit-

able cells (neurons), and the same number again of additional cells (glia), 

are housed together in the human skull. The brain is only one part of the 

nervous system, and hundreds of millions more neurons lie within the spinal 

cord and surround the intestines—this is known as the enteric nervous system, 

which will be ignored in this book, despite claims that it forms part of the 

basis of mental life. Most of our attention will be on the cortex, the wrinkled 

outer bark of the human brain which, though critical for memory, percep-

tion, and deliberate action, contains only about 19 percent of the neurons in 

the brain and is estimated to parcel out into 180 anatomically and function-

ally differentiated regions per hemisphere. The variety of shapes and sizes of 

neurons, distinguished by the branching fibers of their axons and dendrites, 

presents the neuroanatomist with a specimen chamber of classifiable kinds. 

The retina—which is an outgrowth of the brain—alone is thought to contain 

1  Introduction
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4	 Chapter 1

100–150 neuronal types. Glial cells, often regarded only as connective “brain-

glue,” make up their own family of types and subtypes, now thought to have 

distinct functional roles. The population of astrocytes alone includes sixteen 

different kinds: protoplasmic astrocytes, fibrous astrocytes, surface-associated 

astrocytes, velate astrocytes, radial glia, radial astrocytes, pituicytes, gomori 

astrocytes, perivascular and marginal astrocytes, ependymocytes, choroid 

plexus cells and retinal pigment epithelial cells, interlaminar astrocytes, polar-

ized astrocytes, and varicose projection astrocytes.1

Yet it is when we look at the finer details, right down to the cell level, that 

things really start to get complicated. It used to be said that each neuron had 

input structures (dendrites) and an output fiber (axon) for sending on electri-

cal messages. The axon of neuron 1 would connect to the dendrites of neu-

ron 2 via a nanoscale gap called a synapse, across which neuron 1 would send 

little packets of neurotransmitter to either excite or inhibit neuron 2, making 

it either more or less likely to send its own electrical signals (action potentials 

or spikes) down its axon. Many observations upset this textbook picture. For 

one thing, dendrites of cortical neurons themselves produce action poten-

tials and have been modeled as miniature neural network computers (Gidon 

et al. 2020). Details of dendritic structure are thought to have far more impor-

tance for neuronal function than has long been assumed (Larkum 2022). 

The standard account of learning in the brain supposes that assemblies of 

neurons adjust their connectivity patterns by enhancing or weakening the 

strength of synaptic connections through the plasticity mechanisms of long-

term potentiation (LTP) and long-term depression (LTD), respectively. While it is 

anticipated that neurotransmission and plasticity could be achieved through 

a handful of proteins, molecular investigation of the synapse to recover the 

“proteome”—the number of kinds of proteins expressed—far outstrips any 

parsimonious picture, settling at 2,000–3,000 per synapse (Grant 2018). 

Within the cerebellum, the “little brain” that makes up 10  percent of the 

brain’s mass but contains 80 percent of its neurons, learning was attributed 

to LTD, but experiments have revealed a surprising heterogeneity of plasticity 

rules (Suvrathan and Raymond 2018). The same story could be told about the 

heterogeneity of ion channels, the proteins spanning the cell membrane, gat-

ing the passage of specific ions in and out of the neuron (hence governing its 

1.  The sources for this paragraph are Furness (2006), Lent et al. (2012), Zeng and 
Sanes (2017), Van Essen and Glasser (2018), and Verkhratsky et al. (2019).
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Introduction	 5

electrical activity), and similarly, the beginnings of an account of the physi-

ological role that this complexity might have. But this book is not about the 

complications of the brain, it is about the seeking and making of simplicity.

When, in the spirit of the compilers of wonders of the world, people make 

lists of the most complex things in the known universe, the human brain 

wins the prize (e.g., Ladyman and Wiesner 2020, 61). There may be a touch 

of vanity in this, for even the nervous system of C. elegans (the roundworm) 

is not so simple that it is obvious how the combined operation of its 302 

neurons gives rise to each of the little worm’s movements and other behav

iors (Sarma et al. 2018). Every nervous system is complex, and each in its 

own way. The task of the scientist, more than anything, is to make it seem 

as if this were not so. One of the most scandalous things about the ill-fated 

Human Brain Project—a billion-euro moonshot to build a detailed, realistic 

simulation of a mammalian cortex in a supercomputer—was that it did not 

try hard enough to simplify, to find a division between the “relevant” and 

“irrelevant” details out of all the troves of data that went into its compilation 

(Koch and Buice 2015). In contemporary neuroscience, computational theo-

ries are seen as the most promising way to achieve this division (Ballard 2015, 

3). In the course of the book, I will discuss computation and other strategies. 

There will be theories and models that are elegant and beguiling in their sim-

plicity. Yet we should never forget this first brush with complexity, which is 

the uncatalogued reality that each of us carries around in our cranium.

1.2  Thought Is a Bandpass Filter

Every time you conceptualize, categorize, and put a name on something that 

is not a proper name, you abstract away from its particularities. Picture dai-

sies and clover flowers in a lawn. Those four ordinary nouns elide their dif-

ferences. “Flower” co-categorizes the white and yellow types with the beige 

ones, and all the many other sorts to be found elsewhere. “Lawn” neglects 

the varieties of grass and all the nongrassy plants that are there. Zoom in, and 

you will find individuality and uniqueness everywhere. No two daisies, no 

two petals, are exactly alike, and yet they present to a quick glance a carpet 

patterned uniformly enough. For most practical purposes, the differences can 

be ignored—making a daisy chain, sunbathing, and the like. Not so, how-

ever, for the groundskeeper of a sports stadium, where the constituent grasses 

and their stages of growth really do matter. And to an infinite mind, with 
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6	 Chapter 1

infinite memory, each blade of grass, with its own distinct life history, need 

not be co-categorized with all its fellows. Each could have its own name, as 

you yourself do.

We human beings each carry a separate name for ourself, marking us 

as individuals. Yet in so many practical, administrative tasks, humans are 

treated as just another kind of biomass. If estimating foot traffic through a 

supermarket or railway station, for planning purposes such as food distribu-

tion or maintenance of social distancing, the individuality of each person 

counts for nothing. A person becomes a number so often in this society, but 

to ourselves, we see that the details and differences matter. And so with hens, 

which are social animals. They are individuals to one another, having favor-

ites, allies, and enemies. Packed together in a barn, they are just instances 

(a)

F A D(b)

Figure 1.1
(a) The concept of spatial frequency illustrated with Gabor patch stimuli. The black-

and-white pixels in each patch are modulated according to a sine wave, at a par

ticular frequency and orientation. Compare the highest spatial frequency (farthest 

right) and lowest spatial frequency (farthest left). (b) Left is the original photograph, 

a “natural image.” Right is the band-pass-filtered version of the image, which only 

shows structure at the orientation and spatial frequency range indicated by the cen-

tral sinusoidal grating.
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Introduction	 7

of categories: good, average, or bad layers; twelve, eighteen, or six months 

old. For the kind of thought known as discursive, which employs linguistic 

and mathematical concepts, there is necessarily an abstraction away from the 

particularities of the things referred to, and the shape of the abstraction itself 

depends on the practical tasks within which the thought is operative. When 

talk is of “relevant” and “irrelevant” details, we must always ask, “to whom?” 

and “for what purposes?”

The band-pass filter was my first encounter with simplification of the 

brain. As a student, I was taught to do experiments in which filtered images 

like the ones in figure 1.1b were flashed up on a computer screen, and sub-

jects were instructed to report which of a near identical pair had a slightly 

higher contrast. The body of theory motivating these experiments, in devel-

opment since the 1960s, proposed that the early visual system, running from 

the retina through a precortical structure called the thalamus to the primary 

visual cortex (V1), contains an array of “spatial frequency channels” that 

selectively respond to elongated patterns at particular widths, like the ones 

in figure  1.1a. Evidence for this theory came both from psychophysical 

findings of selective adaptation to particular spatial frequencies and from 

physiological recordings of early visual neurons with a preferred sensitivity 

to a narrow range of spatial frequencies and orientations (De Valois and De 

Valois 1988). It is comparable to the theory of audition first proposed by 

Helmholtz in the nineteenth century, which says that the auditory system 

analyzes each complex sound wave arriving at the ear into the set of dis-

tinct frequency components that make up the stimulus, beginning with the 

hair cells in the cochlea, each sensitive to a limited frequency band. A task 

of my PhD was to find out if by positing that V1 is a spatial frequency ana-

lyzer and modeling the responses of individual neurons as essentially linear 

filters that detect the presence of edges in the image, we could predict the 

data collected from experimental subjects (including members of the lab) 

looking at ordinary black-and-white photographs. The results were mixed 

(Tolhurst et  al. 2010), but it puzzled me that such drastically simplified 

models of neurons could even have a hope of summarizing the responses 

of the entire visual system. Indeed, chapter 5 of this book will be about the 

strengths and weaknesses of these kinds of models.

A curious thing is that the function ascribed to neurons in the visual 

system by the channel theory is the task of discursive thought, which is 

to selectively take up a certain pattern or regularity by letting it through 
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8	 Chapter 1

the filter—subsuming it under a concept—and purposefully ignoring every

thing else. To conceive of flowers is to create a filter in one’s mind for all the 

regularities shared in common among flowers, ignoring the particularities 

that distinguish kinds of flowers and individual flowers from one another, 

and disregarding all else that is not flowery in the world. To look at a lawn 

and call all the white and yellow forms there “daisy” is to impose a low-pass 

filter on the scene, which blurs out the fine-grained, distinguishing features 

of each individual so all come out the same in one’s conception. And the 

simplifications that neuroscience must undertake are like this too. No two 

brains, no two neurons, are really identical, but for the purpose of building 

theories and models that predict and explain responses, individuality must 

be blurred out and a uniformity of categorizations must be imposed.

Much more will be said in this book about the simplifying strategies of 

neuroscience. My final point here is an admission that this study is just as 

much a band-pass filter over an inexhaustible variety of methods and ideas 

that make up neuroscience, past and present. The thesis of the book is that 

the dominant ideas that have shaped neuroscience are best understood as 

attempts to simplify the brain. In presenting this thesis, I am putting to one 

side numerous other explanatory grids that could be imposed on the dis-

cipline and might each yield insights. The decision to concentrate on sim-

plification in neuroscience is itself a concession to following the dictates of 

a simplifying strategy. What I can hope is that the results of this filtering 

process will prove instructive. To borrow a different visual metaphor, used 

often by Kurt Goldstein (1934/1939), I have chosen to put simplification 

in the foreground, but the reader should not forget that the background 

remains, visible but unattended.

1.3  Simple and Complex

I have not yet spelled out what I mean by “simple” and “complex.” As 

many readers will know, there exists a science of complex systems, and one 

of its challenges has been to define complexity such that it can be consis-

tently measured across entities as different as algorithms, cells, and econo-

mies. Since there is no consensus definition (Mitchell 2009a, 94, Ladyman, 

Lambert, and Wiesner 2013), I will not pin myself to one; I prefer instead to 

highlight some features of complex systems that best help to demonstrate 

why the brain presents such a challenge. The chapter began with the first 
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two of these criteria: the number and the heterogeneity of components. 

The billions of cells in the brain and the rest of the human nervous system 

are too many to enumerate. Complex systems will have a very large num-

ber of parts. But the number of atoms in a grain of salt is also, to all intents 

and purposes, uncountably big. The difference is that those sodium and 

chloride ions are homogenous and regularly arranged, whereas the neurons 

are highly diverse and only to some extent form a regular array, as with the 

stereotyped Purkinje cell circuits of the cerebellum. And it must be empha-

sized that this “crystalline” depiction of the cerebellum, as comprising a 

uniform elementary structure repeated over and over, can be only a distort-

ing approximation since the fine-tuned differences and modulations of the 

cerebellar synapses are essential to its functions.2

This brings us to the third feature, which is the heterogeneity of the 

parts of the system across time. Brain tissues, like all living materials, are 

always going through processes of reconstitution like a Ship of Theseus. 

Neurons are especially sensitive and plastic. The reactivity and changeabil-

ity of the brain, in response to experience in the short and long term, are 

essential to the role of this organ, which is to support appropriate behaviors 

in a changing environment. The brain is sculpted by time, which is fun-

damental to its being the seat of learning, and hence intelligence. But this 

same tendency to change makes the brain particularly challenging as an 

object of science, for the brain will never be in exactly the same state twice. 

Experimental neuroscience is required to gather neural response data from 

presentation of identical stimuli over multiple trials. The responses show 

trial-to-trial variability, which is normally averaged away and classified as 

noise. Chapter 7 will be about the “Heraclitean” brain and how this kind 

of complexity presents a limit to any claim of scientific models to convey a 

perspective-independent truth about neural function and activity.

The fourth way in which the brain is extremely complex is in the high 

number of interactions among its components. The textbook account is 

that the synaptic connection between an axon and a dendrite is the way 

that the elements of the nervous system interact with one another. Just on 

those terms, the system is excessively interactive. For instance, each corti-

cal neuron is estimated to have a synaptic connection with around 10,000 

2.  See, for instance, Zeng and Sanes (2017) and Cembrowski and Spruston (2019) on 
neuronal heterogeneity and the problem of cell type classification.

Downloaded from http://direct.mit.edu/books/book-pdf/2345162/book_9780262378628.pdf by guest on 25 March 2024



10	 Chapter 1

other cells (Kunkel et al. 2012). In addition to the basic account, there are 

other modes of interaction, such as chemical neuromodulation, signaling 

among glia, and between glia and neurons. The result of all this interactiv-

ity is that the behavior of each component at any one time is very context 

dependent, which is a fifth form of complexity. As will be discussed in chap-

ter 3, reductionist strategies in science assume the opposite—that the behav

ior of a part of the system is approximately context independent, such that it 

is feasible to study parts in isolation from the whole in order to gain knowl-

edge of their normal operation within the complete system. Reduction runs 

aground when the accumulation of knowledge concerning the parts in isola-

tion is not helping to explain the behavior of the collective.3 It is actually an 

important open question, whether this is the situation confronting neurosci-

ence today. So many facts have been discovered about individual neurons, 

as well as subneuronal structures, by examining them under a microscope in 

slice preparations and in petri dishes, in isolation from the rest of the brain. 

Much of this research is what underpins systematic approaches to drug dis-

covery for neuropathologies. But if the behavior of the parts in isolation 

does not reveal their role in the pathology as a whole, the strategy is flawed.

The sixth sort is the kind of complexity that I call organizational depth, 

which is akin to the notion of “degree of hierarchy” (Mitchell 2009a,109).4 

The idea here is that gross divisions of the nervous system can be made to 

demarcate it into working parts—an early discovered one being the sensory 

versus motor nerves at the roots of the spinal cord (Berkowitz 2015); fur-

thermore, these parts also afford subdivisions into elements that themselves 

show intricate organization, and in turn into further sublevels of complex 

operations. This is in contrast to something like a clockwork toy in which 

the whole divides into metal parts with interesting shapes and an intricate 

system of organization, but those parts themselves are just homogeneous 

pieces of metal and do not reveal any other kind of clockwork system in 

miniature. Leibniz held that organisms differed from mechanisms produced 

3.  This is often given as a hallmark of emergent behaviors. I will not go into the rela-
tionship between emergence and complexity here, not least because working out a 
definition of emergence would be a diversion. Anderson (1972) is a classic reference 
on this question. Also see Gillett (2016) on concepts of emergence.
4.  The source here is Herbert Simon (1962) on the “architecture of complexity.” This 
topic will be revisited in chapter 10.
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by the human hand, being “divine machines.” That is, living beings were 

said to be machines whose parts were themselves machines, and the parts 

of the submachines were themselves machines, ad infinitum (Smith 2011). 

As I will argue in chapter 4, the brain has much more the character of a 

“divine machine,” but the popular comparison of brain and computer—an 

artifact lacking so many layers of organizational depth—serves precisely as 

a means to abstract away from the complexity that is housed within the 

subsystems of the living factory that is the brain.

An idea from complexity science that has gained traction in neuroscience 

is that when you have a complex system with hierarchical organization into 

distinct “levels,” the behavior of the upper-level structures (i.e., the ones 

closest to the whole system) are pretty much indifferent to variation in the 

structures and processes at the lowest levels. For example, Dehghani (2018, 2) 

writes:

The macroscopic behavior of the system (such as network balance of excitation/

inhibition) is insensitive to the computational state of individual neurons. . . . ​

This insensitivity is not because the functional symmetry of individual elements 

transcends to the total state (Anderson, 1972), but because interconnectedness 

renders many details (at fine scale) to be irrelevant at the large-scale behavior of 

the system (Goldenfeld and Kadanoff, 1999). Thus, attempts for precise control of 

the system at its fine scale is precisely where it will fail.

The point here, that it is misguided to attempt to control the gross behav-

ioral “outputs” of the brain by tweaking a neuron here and there (as those 

following reductionist precepts have done), is well taken. However, I advise 

caution, now and in the course of the book, not to be too quick to assume 

that all those details at the finest levels of organization do not matter to 

system behavior, and to trust that highly abstract models are preserving all 

the details essential to explaining it. A leading direction of complexity sci-

ence has come from physicists eager to show how you can get simple lessons 

from complex things (see Goldenfeld and Kadanoff 1999). Physical systems 

quickly bottom out into quite homogeneous, elementary components, but 

living systems are not like that, and this cannot be unrelated to the fact that 

organisms can do countless things that can never be expected of inanimate 

objects. Moreover, because of mechanistic depth complexity and the com-

plicated patterns of connectivity within the cortex, it turns out that there 

is no unambiguous hierarchy of levels to be found, such that low-level and 

high-level processes can be neatly separated from one another (Hilgetag and 
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Goulas 2020, Chirimuuta 2022a). An aim of this book is to shift people away 

from the appealing assumption that in neuroscience, there is something 

simple, and hence readily comprehensible, at the bottom of everything. 

That the changeable complexity of appearances reduces to elementary parti-

cles, or can be shown to be the product of compact laws, has been a working 

assumption of physics, but we must interrogate its suitability for employ-

ment elsewhere.

There will be little complexity science under discussion in the chapters 

to follow. But before leaving the subject, I would like to bring up the idea 

articulated by the physicist Murray Gell-Mann: his definition of effective 

complexity—namely, that systems that are complex are ones that seem to lie 

between order and randomness (Mitchell 2009a, 98–100). This is very much 

true of the complexity on display in the living world: there are patterns and 

regularity everywhere, and at the same time, on closer examination, there 

is always variation that looks random, although it also could be part of an 

indiscernible pattern. The regularity of kinds of organisms allows us to clas-

sify and utilize them, but we are also left with an intractable particularity, 

which at the very least in our own case—as individual human beings—we 

would not want to discount. A theme of this book is that the simplification 

of the brain has proceeded in neuroscience by seeking out orderliness and 

creating versions and representations of neural systems in which regularity 

is exaggerated while apparent disorder and particularity—which have their 

own claims to be essential features—are discounted. The science marches on 

by creating ideal patterns, and in that way, a complex system (lying between 

order and apparent randomness) takes on the guise of a simpler, more regu-

lar one.

From Cassirer, I borrow the thought that this kind of idealization, the 

projection of the observed, jumbled, real system onto a plane of ideal order, 

involves a reconstitution of the concrete objects of science in alien terms. 

He writes that “it is upon a peculiar interweaving of ‘real’ and ‘not-real’ ele

ments, that every scientific theory rests. . . . ​That form of knowledge, whose 

task is to describe the real and lay bare its finest threads, begins by turning 

aside from this very reality and substituting for it the symbols of number and 

magnitude” (Cassirer 1910/1923, 117).

However, I depart from Cassirer in my insistence that the task of science 

is not description of reality per se; rather, it is description for the purposes 

of manipulation and control of its objects. As will be argued in chapter 8, 
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instrumental ends are not detachable from the most theoretical activities of 

neuroscience, and technological results are not the straightforward conse-

quences of discoveries of pure science, as is too often assumed. More back-

ground on this broadly Kantian philosophy of science will be provided in 

chapter 2. I will now say more about three key forms of simplification that 

are operational in my case studies in part II.

1.4  Making Things Simple

There are three important simplifying strategies that have shaped the neu-

roscience under discussion in this book. They interact and reinforce one 

another in significant ways. The first strategy to consider is mathematiza-

tion, the construction of a mathematical model, which is always an abstrac-

tion and normally an idealization—a purposeful distortion of the target of 

representation. The second is reducing, working materially with simplified 

preparations and making the reductionist assumption that the facts gleaned 

from those reduced experiments are building blocks for understanding the 

wider system. The third is the formation of analogies between the compli-

cated, unfamiliar neural system and a simpler and more familiar artifact.

1.4.1  Mathematization

The kind of simplification afforded by mathematical models has received the 

most attention in recent philosophy of science, centered on the practices of 

abstraction and idealization. Abstraction is usually defined as the model’s omis-

sion of details that exist in the target system, and idealization as the modeler’s 

decision to represent the target in ways known to be false (e.g., Levy 2018 

and references therein). For example, a model of a falling body that omits air 

resistance is said to be abstract because it leaves out a detail, whereas a model 

in genetics that posits an infinite breeding population is said to be idealized 

because no population could in fact be infinite. But since the omission of 

details is also a way to produce a false representation, it can be hard to see the 

difference between these two practices. To individuate them, it is instructive 

to consider their antonyms. The opposite of “abstract” is “concrete,” whereas 

“ideal” stands in opposition to “real.” Every mathematical rendering of a 

concrete entity or occurrence in nature is, properly speaking, an abstraction. 

A maximally detailed mathematical model, in which no forces are omitted, is 

still an abstraction in the sense of being a departure from the concrete. And 

Downloaded from http://direct.mit.edu/books/book-pdf/2345162/book_9780262378628.pdf by guest on 25 March 2024



14	 Chapter 1

we see that it involves simplification because mathematization requires the 

projection of a homogeneity onto the items counted or measured, as well as 

neglect of their particularity. This is a point made by Henri Bergson:

It is not enough to say that number is a collection of units; we must add that 

these units are identical with one another, or at least that they are assumed to be 

identical when they are counted. No doubt we can count the sheep in a flock and 

say that there are fifty, although they are all different from one another and are 

easily recognized by the shepherd: but the reason is that we agree in that case to 

neglect their individual differences and to take into account only what they have 

in common. . . . ​The idea of number implies the simple intuition of a multiplicity 

of parts or units, which are absolutely alike. (1889/2001, 76)

Any representation of a concrete system in the abstract language of mathe

matics is ipso facto a simplification. Against the view that mathematization 

does not always bring about simplification, because a system might be repre-

sented with a ridiculously complex mathematical structure, I assert that even 

in such a case, the mathematical model must abstract away from the par-

ticularities and qualitative properties of the target of representation, and the 

restriction to purely quantitative terms always brings about a simplification.

The opposition of “real” with “idealized” has the connotation of the 

superiority of an ideal version of things over a base reality. Although this 

connotation is not active in the current scientific terminology, it is worth 

pausing to examine it. The prototypical instance is the contrast between the 

actual shape of an object and the geometric form that it best matches. No real 

spherical ball could be a perfect sphere, and yet the perfect sphere, the one 

defined geometrically, is somehow the ideal shape that the real ball aspires 

to. With these geometrical idealizations, it is always the case that the ideal 

form is more regular and symmetric—simpler—than the real one. There is 

metaphysical and epistemological baggage behind this, to be discussed in 

section 1.5.1. My notion of the ideal pattern will extend this treatment to 

cases where patterns in nature are represented by a model, such as an equa-

tion whose form is likewise more regular, symmetrical, and in various other 

ways simpler than the reality depicted. Moreover, we will see in chapter 5 

that experimental practices work to generate phenomena, which I also call 

ideal patterns, that are more regular and in various ways simpler than occur-

rences outside the controlled conditions of the laboratory. This brings us to 

the next strategy for simplification: reduction.
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1.4.2  Reducing

Scientists make things simple by making simple things. The laboratory is a micro-

cosm shielded away from the complexifying forces of uncontrolled variables, 

and within which the processes giving rise to observable phenomena can be 

kept on a tight reign of measurability and manipulability. It is only here that 

the ideal forms stated by the explanatory laws in physics actually apply—

precisely the point argued in Nancy Cartwright’s classic work on experimen-

tation and modeling (Cartwright 1983, 1999). Neuroscientists refer to these 

simplifying settings as “reduced experiments.” As we will see in chapter 5, the 

simplification is often brought about in cognitive neuroscience by choice of 

stimulus conditions to elicit less complex, more readable responses from the 

brain under investigation. The hope—now called into question by neurosci-

entists such as Hasson, Nastase, and Goldstein (2020)—was that the simpler 

stimuli and responses could form the basis for generalization to understand-

ing neural activity in less controlled conditions. A reason to question the 

validity of the generalization stems from the brain’s adaptiveness: neuronal 

responses quite readily conform to the statistics of the stimuli they are pre-

sented with, so by bombarding the brain with simple stimuli, one can create 

simplified patterns of response. This is the view argued by neuroscientists 

Gao and Ganguli (2015).5 The mistake would be to think that by extrapolat-

ing from the results of those experiments, one can predict how the brain will 

respond in more complex, real-life situations. The advantage that the experi-

mental physicist has over the neuroscientist is that the object of investiga-

tion is not inherently plastic and sensitive to the context of its surroundings, 

which is what the brain is to an extreme degree.

Experimental neuroscience has also employed reduction in the stan-

dard sense used elsewhere in biology, which means separation of a part 

of the organism from the rest, performance of precise examinations and 

interventions feasible only under such conditions of isolation—and with 

this detailed characterization of the parts in hand, the hope that an expla-

nation of the behavior of the whole system can be assembled from those 

building blocks. Again, for reductionism to be viable, the assumption that 

the behavior of the parts is approximately the same in and out of context 

must hold well enough. Chapter 3 will present a case from the history of 

5.  Also see Gao et al. (2017), discussed in chapter 5.
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neuroscience—the reflex theory of the brain—that took the reductionist 

track and failed, not least because of the unsuitability of the assumption of 

context independence of the part processes.

1.4.3  Analogy

The strategy of analogy is also one of simplification through making, although 

in this case, we are speaking of artifacts, technologies, and other cultural 

objects drawn in from outside neuroscience. The most saliant instance is 

the computer analogy for the brain, which will be the topic of chapter 4. 

And in chapter 6, I will argue that the positing of neural representations—a 

core idea in mainstream theoretical neuroscience—is driven by an analogy 

between neurons and artificial signaling systems. The deployment of analo-

gies between the organ and the artifact works as a route toward simple mod-

els because while very complicated, the technologies are always relatively 

less complex than the brain. Thus they serve as a simplifying lens, a filter, 

through which to view the manifold processes within the brain. Moreover, 

artifacts have been designed by humans with particular functions in mind. 

By imposing a functional blueprint on the biological system (for which no 

explicit design exists), thus highlighting certain forms of interaction and not 

others, the scientist is permitted to abstract away from numerous details not 

deemed relevant to the function in question. The most famous instance of 

this procedure is David Marr’s specification of the computational and algo-

rithmic/representation levels of description for the visual system (Marr 1982).

While analogies with designed systems are salient in the history of biology 

(Canguilhem 1965/2008c), it is worth noting that modern physics likewise 

begins with the examination of machines. As will be explored in chapter 8, 

the thesis of historian of science Boris Hessen was that technology serves as 

a source of systems for science to theorize, and those theories and models 

are then used to explain the workings of things not humanly made (Freud-

enthal and McLaughlin 2009, 33). The salient example here is the discipline 

of mechanics, which started as the theory of machines and was then applied 

to celestial rotations and falling bodies of any sort. Again, the value of such 

analogical transfers is that work can begin with a relatively simple system, 

like a pulley or catapult, with the resulting model serving as a scaffolding for 

the examination of natural objects where the relationships between parts 

and forces is harder to grasp. At the same time, these analogical methods 
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themselves rest on the assumption that nature is simple, in the sense of being 

uniform in its operation from one kind of situation to another.

A kind of analogical strategy common in the history of physics is the 

transfer of models of familiar, observable, macroscopic systems to unobserv-

able microscopic ones (Hesse 1966). Isaac Newton himself justifies this pro-

cedure via the assumption of the world’s simplicity, writing that “nature is 

exceedingly simple and comformable to herself. Whatever reasoning holds 

for greater motions should hold for lesser ones as well” (quoted in Westfall 

1981, 389). A key assumption of uniformity, discussed in chapter 8, is the one 

advocated by René Descartes—namely, that there is no essential difference 

between the operation of artifacts and the workings of nature, which under-

lies his account of living bodies as mechanisms and the role of machine anal-

ogies in his natural philosophy.6

A thing to observe, in conclusion of this section, is that these three strands 

together constitute the dominant way that simplicity has been sought within 

modern science. It is not inaccurate to say that the analogy of the universe as 

a machine is the centering thought that separates the main stream of research 

since the seventeenth century from older traditions of natural philosophy 

and their strands of continuity into the modern era, those being shaped 

by the analogy of the universe as an organism (Westfall 1981,14; more on 

this in section 1.5.2). Such root analogies form a Weltanschauung—the sci-

entist’s intuition, normally implicit, of how the world just is. The seeking of 

6.  The opposite view was expressed by Margaret Cavendish in the Philosophical Let-
ters of 1664: “Art is not able to demonstrate nature” (quoted in Peterman 2021, 222).

The Cartesian view is certainly the dominant one nowadays, reinforced by the fash
ionable thought that it is impossible to draw a division between natural and cultural 
objects. However, I will argue at various points in this book that failure to attend to 
the differences, to disanalogies between living things and artificial devices, has been a 
mistake. In such cases, it is easy to see that the relevant distinction is between objects 
that are put together piecemeal by humans and living organisms that have come into 
being through some process of reproduction and are self-making (autopoietic). While 
the many organisms that have been selectively bred or genetically modified are both 
natural and artificial at the same time (just as human beings are both natural and cul-
tural beings), they still count as different from artifacts in the sense relevant here. The 
brain of a genetically modified lab rat is no more like a computer than the brain of a wild 
rat, regardless of the part played by humans in the animal’s creation. See Newman (2004) 
on historical treatments of the division between natural and technological objects.
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simplicity through mathematization is related to this. As objects, machines 

are eminently mathematizable. Nothing is lost with the homogenizing gaze 

of mathematical abstraction since each machine, and each of its parts, is 

an interchangeable member of a class, not an individual unique unto itself. 

This is because machines are built for uniformity and for ready exchange 

and repair of parts (since they are not self-repairing). In turn, this relates to 

the suitability of machines for reductive explanation. The parts are charac-

terizable independent of one another, and of the whole, since that is how 

they first came into being, at the hand of their manufacturer. The ontology 

of machine parts is not a relational one. The being of cogs and wheels and 

microchips (as opposed to these functionally derived labels) is not inherently 

dependent on their context within a device, as can be argued, in contrast, 

of the ontology of components of living systems (Dupré 2012). Reductive 

explanation reverses, through decomposition, the process through which a 

person would put together a machine. Thus, with the root analogy in place 

(namely, that the world and its inhabitants are mechanisms), it makes sense 

to seek simplicity by representing them mathematically and breaking them 

down into constituent parts.

1.5  On Simplicity and Truth

Why do scientists seek simplicity? I offer here two divergent answers to 

this question.7 The first, the metaphysical-epistemological answer, is that 

the universe is fundamentally simple, such that a theory that is simpler is 

more likely to be true. The second, a psychological answer, is that human 

intelligence is limited since we are finite beings, so we are forced to look for 

and/or create simplicity because otherwise we cannot think and act. Two 

perspectives from physicists Galileo Galilei and Pierre Duhem, separated 

by centuries of time, express the contrast. It was observed prevously that 

mathematical descriptions are necessarily simpler than the concrete phe-

nomena they depict. Thus, one way to express the view that the universe 

7.  Of course, there are other possible answers. One line would be to regard simplicity 
as a widely endorsed but negotiable scientific value, to be contrasted with alternative 
value schemes, which place higher value on heterogeneity, particularity, and com-
plexity of interaction (Longino 1995). Another answer would be to cite the connec-
tion made by various scientists between simplicity, beauty, and truth (Ivanova 2020).
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is fundamentally simple is to assert that mathematical entities have some 

sort of ontological priority. As is often quoted, Galileo’s opinion was that 

the universe itself was a book “written in the language of mathematics,”8 

meaning that it was incumbent upon the investigator to learn the symbols 

of maths and geometry in order to acquire knowledge of it. The contrasting 

view about the significance of simplicity is expressed by Duhem:

He [the scientist] will choose a certain formula because it is simpler than the 

others; the weakness of our minds constrains us to attach great importance to 

considerations of this sort. There was a time when physicists supposed the intel-

ligence of the Creator to be tainted with the same debility. (1906/1954, 171)

Here, the seeking of simplicity is a requirement that stems from human 

limitations, not the nature of the universe beyond us. It is interesting that 

Duhem connects this issue to theological opinions—more on this in a 

moment. My sympathies are with the second answer. To the best of our 

knowledge, the world, especially the living world, is extremely complex, 

and this complexity has been refractory to various attempts to strip down 

the world to some simple order and structure. If truths about nature are to 

be had, they are likely to be “unsimple” ones (Mitchell 2009b). This section 

will explore how belief in the inherent simplicity of nature has shaped the 

past of science and how it figures in neuroscience today. In addition, it will 

show that the notion of simplicity in science is itself various, and compli-

cated, figuring differently in different traditions of research, with a notice-

able split between physics and biology in the way that simplicity has been 

conceptualized and sought.

1.5.1  Ockham and Desert Landscapes

There is no suggestion that Galileo’s answer has been superseded by Duhem’s 

one. In fact, both views are well represented in recent times. For example, 

Einstein tells us of a “deep faith that the principle of the universe will be 

beautiful and simple,”9 whereas Ernst Mach, a physicist who was in other 

8.  The quotation is from Galileo’s The Assayer of 1623, see the translation in Drake 
(1957, 237–238), and Remmert (2005) for discussion.
9.  I have not yet been able to find the source for these often-quoted words. In the 
Herbert Spenser Lecture, which is Einstein’s considered statement on the role of math-
ematical simplicity in physics, he tells us, “Our experience up to date justifies us in 
feeling sure that in Nature is actualized the ideal of mathematical simplicity” (Einstein 
1934, 167). Note here that it is not an article of faith, but rather the experience of the 
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ways quite an influence on Einstein, argued that the scientist’s seeking of 

compact laws is all about the achievement of “economy of thought,” neces-

sitated by the inherent limitation on how many empirical facts a human 

being can observe, memorize, and digest (Mach 1882/1895). Among com-

putational and theoretical neuroscientists, many of whom began their sci-

entific lives in physics, there seems to be a prejudice in favor of treating 

simple models as revealing of basic truths. We find embarrassment in how 

much of what is known about neurobiology is ignored or represented inac-

curately by quantitative models, countered by the claim that they inform 

the scientist about some “essence.” As Grace Lindsay writes, “All models are 

wrong, because all models ignore some details. All models are also wrong 

because they represent only a biased view of the processes they claim to 

capture. And all models are wrong because they favour simplicity over abso-

lute accuracy. All models are wrong the same way all poems are wrong; they 

capture an essence, if not a perfect literal truth” (2021, 15).

The next passage is telling because it touches upon the psychological reason 

for the need for abstraction—that a simple model “allows us to think about a 

phenomenon more clearly”—but then veers, via another curious comparison 

with artistic production, into a conclusion that seems unmotivated by what 

has gone before, asserting the revelation of truth through the falsehood of 

abstraction; it is from an appendix to a major neuroscience textbook:

What makes a model good? Clearly it must be based on biological reality, but 

modeling necessarily involves an abstraction of that reality. It is important to 

appreciate that a more detailed model is not necessarily a better model. A simple 

model that allows us to think about a phenomenon more clearly is more powerful 

than a model with underlying assumptions and mechanisms that are obscured by 

complexity. The purpose of modelling is to illuminate, and the ultimate test of a 

model is not simply that it makes predictions that can be tested experimentally, 

but whether it leads to better understanding. No matter how detailed, no model 

can capture all aspects of the phenomenon being studied. As theoretical neurosci-

entist Idan Segev has said, borrowing from Picasso’s description of art, modeling 

is the lie that reveals the truth. (Abbott, Fusi, and Miller 2013)10

physicist that justifies belief in simplicity. Norton (2000) describes how Einstein was 
indifferent to the guiding power of mathematical simplicity until late in his career, with 
the development of the general theory of relativity.
10.  Compare Eve Marder, interviewed in Nautilus magazine, who said: “The purpose 
of building a model should never be to attempt to replicate the fullness of biological 
complexity, but to provide a simplified version that reveals general principles.”
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It is not surprising to find these almost reflexive, not quite coherent 

expressions of the metaphysical belief that reality is simpler than it first 

appears, along with the epistemological principle that the search for simplic-

ity is the path to some truth—whose discovery requires a little artistic flair. 

These ideas are entrenched in the history of philosophy, science, and theol-

ogy. We need only think of the long reach of Platonism in the intellectual 

culture of Western Christendom. It is plausible to characterize the contrast 

between medieval natural philosophy and the mechanical philosophy of the 

seventeenth century (the latter being the world picture usually credited with 

paternity of modern science) as amounting to an intensified push for parsi-

mony in the newer way of looking at things. The Aristotelian metaphysics 

of the Scholastics was routinely charged, by those seeking to replace it, with 

ontological excess—with the multiplication of beings beyond necessity. As 

reported by Pasnau (2011, 10–11), Ockham’s procedure of reducing meta-

physical categories into a limited set of more basic ones laid the groundwork 

for the early modern corpuscularian theory of matter,11 and two central 

arguments in favor of the “mechanistic-corpuscularian framework” were its 

greater parsimony and intelligibility. These two theoretical virtues obviously 

pair well together since a simpler theory is easier to understand. But the 

premise that the simplicity and intelligibility of a theory are hallmarks of 

truth is not self-evidently true. “Even if we aim at intelligibility,” Pasnau 

writes, “there is no guarantee that the world will cooperate. . . . ​Sometimes, 

from our vantage point, the world itself is just paradoxical” (2011, 48–49).12

But Marder then goes on to hint at a psychological reason for avoiding a very 
detailed model which represents neurobiological processes in a more realistic way: 
“[It] is destined to fail to produce new understanding because it will be as complex as 
the biological system” (Requarth 2015).
11.  Ockham himself did not state Ockham’s razor, and as noted by Spade (1999, 
102) the maxim itself is not radical since versions of the thought can be found in 
Aristotle. The relevant breach is in how minimal an ontology is thought to be suffi-
cient. The moderns set out to do more with far less than the norm among scholastics, 
and Ockham was a forerunner of the push toward minimalism.
12.  The world of quantum physics is certainly paradoxical in comparison with the 
world of classical physics, conceived in the early modern period. Yet the commit-
ment to simplicity seems indispensable in physics. As Falkenburg (2007, 38) writes:

Quantum theory has shaken the traditional belief in the rationality, uniformity and sim-
plicity of Nature. But to completely dispense with these principles would mean dispensing 
with physics as a science. Weakened versions of the principles of unity and simplicity have 
survived the transition to quantum theory.

Downloaded from http://direct.mit.edu/books/book-pdf/2345162/book_9780262378628.pdf by guest on 25 March 2024



22	 Chapter 1

One path to justification of the premise that simplicity is an indicator 

of truth came from theology. There is a subterranean connection between 

monotheism and the high estimation of simplicity (etymologically, “one-

foldness”). An instance of the theological justification is in Nicolas Male-

branche’s principle that the created world would not do honor to God unless 

governed by simple, general laws of nature (Jolley 1997, xxxiii). Leibniz goes 

further than Malebranche in making simplicity itself a criterion for the evalu-

ation of possible worlds. The most perfect of the possible worlds will be one 

both “simplest in hypotheses and the richest in phenomena” (Jolley 1997, 

xxxiv). Indeed, as Vassányi (2011, 5) observes, “It is a principle of early mod-

ern philosophical theology that God always chooses the simplest means to 

achieve the greatest possible effect.” Thus, the investigator into nature has 

a guarantee that a simpler law is more likely to be true because it is more 

likely to have been chosen by the Creator. Physics, even these days, has not 

put theology fully to one side. Stephen Hawking (1995, 193) described the 

prospect of a grand unified theory in physics as a chance to “know the mind 

of God.” The language may well be figurative, not an expression of faith, but 

it nonetheless stakes a theological position for it erases the division between 

finite and infinite minds. If the laws governing all of physical reality are 

simple enough to be discoverable and intelligible to finite minds, then that 

means there is no unbridgeable gulf between the human intellect and infi-

nite intelligence when it comes to knowledge of the natural world.13

The principle of parsimony animates the dominant ontology in Anglo-

phone philosophy today, which is physicalism. Even though it is quite tricky 

to characterize what exactly should be meant by “physical” (Wilson 2006), 

the idea is that the kinds of entities, processes, and properties discovered 

by the physical sciences exhaust all that can be said, fundamentally, to 

13.  See Martin (1951/1955, 6) on the long Platonic tradition in which “thinking the 
truth means becoming like God,” and the theological grounds for the possibility of 
physics that are given by Leibniz:

If all possible worlds and among them this world, are continuously thought by God, the being 
of the world is primarily a being thought and the world is therefore in its original being intel-
ligible, transparent to reason. It may still be the case that real insight into the world is only 
possible for an infinite understanding, and that human thinking is finite and limited; but all 
this does not prevent the existence of the world from being in principle rational and hence 
conceivable and understandable by human beings, at least through an infinitely extended 
approximation.
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exist. Indeed, we speak of all kinds of objects that are left uncharacterized 

in fundamental physics (radiators, senses of humors, cows, and daisies), but 

these are all said to be supervenient on—have a relationship of dependency 

on—the physical. In this, contemporary analytic metaphysics performs the 

role assigned to it by Hegel, of being an expression of its era in thought. 

The fewer kinds of things there are, fundamentally, the more inherently 

simple the world is, the more likely it is to be fully theorized, and therefore 

controlled. And so there is a veiled Will to Power in Quine’s (1948) aesthetic 

preference for desert landscapes,14 as well as in Jackson’s (1998) jibes against 

the kind of ontology that resists the physicalist’s forced choice of “reduce or 

eliminate” when it comes to problematic kinds such as colors, values, and 

persons. The charge is that unless you boil things down (a lot), ontology is 

no more than the drawing-up of big lists, a kind of mindless stamp collect-

ing, or worse, the development of an overpopulated slum!

But unless the contemporary metaphysician is willing to bring theology 

once again to the argument, it is unclear what the justification for parsimony 

is.15 There are gestures toward the reductions of other branches of science 

to physics, but these claims unravel in their historical details. One might 

point to the technological achievements that stem from formulation of theo-

ries and models that are simple. But a fatal weakness here—to anticipate the 

content of chapter 8—is reliance on the common but mistaken assumption 

that technology is the downstream consequence of discovery of truths about 

nature. Simple descriptions of natural occurrences are indeed better for tech-

nological control, not because they capture any essential truths but because 

they include only a distorted subset of details relevant for control.

1.5.2  Unity and Purpose

We have just considered a notion of simplicity in nature most strongly asso-

ciated with physics. This notion prizes a stripped-down ontological mini-

malism and does not countenance the idea that anything important is lost 

14.  However, Quine’s remarks on the value of simplicity in The Web of Belief are 
admittedly more complicated than this (McNulty 2021).
15.  We saw in note 9 that Einstein felt that his own experience of confronting phys-
ical problems led him to the belief in the underlying mathematical simplicity of 
nature. But this could not work as a general argument for parsimony—other scientists 
have contrary experiences, especially ones working outside physics.
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in the translation of natural occurrences into mathematical abstractions. It 

meshes well with the three simplifying strategies outlined in section 1.4, and 

it was noted that all these tendencies accompany the shift to a mechanistic 

Weltanschauung. This basic story needs to be enriched by turning now to the 

notions of simplicity that float around the supposedly superseded worldview 

of the universe as organism-like, rather than machine-like. These, as we will 

see, are still relevant to the study of simplification in neuroscience today.

I follow Peterman’s (2021) use of the idea that explanation comes about 

via the unification of phenomena. While this is usually cashed out as the 

subsumption of phenomena under laws of nature, another path to unifica-

tion is in the positing that various phenomena relate to one another through 

their belonging to one integral entity, the prototypical case being that of the 

organism. Peterman’s argument is that the positing of souls, common in 

various natural philosophies often denigrated as animistic, seeks explana-

tory unification by claiming inherent relatedness (e.g., “sympathies” and 

“antipathies”) among parts and processes of an entire, individual organism, 

and analogously among more disparate occurrences in the world, such as 

planetary motions and seasons.16 It is to be noted that “unity” also has its 

etymological basis in “oneness” and is a version of simplicity. The relevant 

point for the purposes of this chapter is that the notion of an organism, as 

a unified, integrated being whose diverse parts and operations serve a com-

mon purpose, affords a way to conceive of simplicity in nature very different 

from the one I described earlier.17

16.  The focus of Peterman’s essay is the explanation of order of nature in early mod-
ern natural philosophy through positing of a “world soul,” using an analogy between 
the organizing soul of one animal and the organizing principle of the whole uni-
verse. The most influential philosopher to attribute the unity and purpose of living 
beings to the presence of souls (the psyche) was Aristotle, in De Anima. Thomas Willis 
is an important figure in the history of neuroscience, and his accounts in the Two 
Discourses of 1683 posited various souls of animals. As with the mathematical notion 
of simplicity, world soul theories have links to Platonism since “ψυχὴ τοῦ κόσμου” 
appears in the Timaeus. This was taken up by the seventeenth-century Cambridge 
Platonists such as Ralph Cudworth: “The Universe in some sense [is], as the Stoicks 
and Platonists define it, one vast entire Animal” (quoted in Peterman 2021, 6).
17.  We should note an important point of difference between unification via the 
laws of nature and the positing of souls as unifying principles. The search for laws of 
nature aims at discovery of an absolute regularity of phenomena. Paradigmatic natu
ral laws are exceptionless. This high level of regularity is what makes laws invalu-
able guides for the prediction and control of the occurrences that they subsume. 
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A salient feature of this view is the idea of a whole as something that has 

ontological priority over its parts. Thus, there is a strongly antireductionist 

tendency here, in contrast with a reductionism that would assert the meta-

physical and/or epistemological priority of the parts over the ensembles to 

which they belong. There is also an emphasis on the harmonious interplay 

of the parts, which has historically tied this organicist or holistic view to 

theories of beauty in aesthetics.18 Goethe, the poet and natural philosopher, 

is representative of the approach, and an inspiration among later organicist 

biologists, such as Goldstein. In The Organism, Goldstein (1934/1939, 479) 

quotes the following words of Goethe: “In the human mind, just as in the 

universe, there is no top or bottom, All parts have an equal claim upon a 

common center which manifests its hidden [geheimnes] existence in the 

harmonious relationship of the parts to it.”

Sentiments such as these make sense as an expression of the worldview 

that begins with organismic unity rather than mechanistic intelligibility. 

We should note also that the idea of unification as harmony is apt within 

biology because it presents unity as encompassing, and in fact requiring 

particularity and heterogeneity, in a way that geometrical ideals of simplic-

ity cannot. Acoustic harmony is an accord that necessarily contains hetero-

geneity, a synthesis of differences, as does the harmonious interaction of 

But natural phenomena, as Peterman (2021, 210) writes, exhibit “variety and com-
plexity that cannot easily be captured by general laws but is clearly not chaotic.” 
She argues that this particularistic kind of order is what world soul theories seek to 
account for. It is interesting to observe that this order-with-apparent randomness, 
or regularity-with-particularity, is what was identified above as a characteristic of 
complex systems.
18.  The philosophy of Lord Shaftesbury nicely instantiates this connection:

To be beautiful, according to Shaftesbury, is to possess ‘Unity of Design’. A beautiful thing is 
beautiful because all its parts ‘concur in one’, because it has the ‘Character of Unity’, because it is 
‘a Single Piece’. A beautiful thing ‘constitutes a real Whole, by a mutual and necessary Relation of 
its Parts’. It is ‘a Whole, coherent and proportion’d in it-self’. (Gill 2021, 13, references omitted)

In the third Critique, Kant sets such ideas to work in characterizations both of the liv-
ing being and of the beautiful. Cassirer (1918/1981, chapter 6) emphasizes that the ideal 
of harmony is what joins the seemingly disconnected topics of that book and credits 
Leibniz as the primary source. As Beiser (2010, 32) relates, “There is a deep aesthetic 
strand to Leibniz’s metaphysics. . . . ​Unity amid variety is order or harmony, which is 
the structure of beauty itself. Hence living force manifests itself as beauty, so that beauty 
is the measure of the power of a substance.” See also Phemister and Strickland (2015).
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creatures within the natural world.19 Likewise, an organism is an “organ-

ised body” (Cheung 2006): it contains heterogeneous parts, whose diverse 

operations serve a mutual benefit.

The theology around this view is also quite different from the one 

encountered in the previous section, which was centered on divine legisla-

tion. Peterman (2021, 190) observes that Acts 17:28—“In Him we live, and 

move, and have our being”—is perhaps more often cited than any other 

piece of Scripture in early modern natural philosophy.20 The positing of a 

“world soul” (anima mundi) is a way to express this. Robert Fludd went as 

far as to identify God with the anima mundi, which is to say that God is 

the ultimate whole and unifying principle. Others, such as Anne Conway, 

characterized the world soul as a mediator, a “Middle Nature” between God 

and creation. Again, there seems to be a connection with monotheism, the 

attraction of the idea of the world soul being that “it enforces the primor-

dial, divine unity in nature’s diversity” (Peterman 2021, 189).

Arguably, it is because the ideal of simplicity as unity is especially apt to 

the phenomena that biologists must deal with—ones that show purposeful 

order among particularity and heterogeneity—that the history of modern 

biology is not a straightforward story of the rise of the mechanistic frame-

work. Instead, its path since the seventeenth century has been an oscillatory 

one, with alternating trends of reductionist and antireductionist move-

ments, labeled by Canguilhem (1955/2015) as “mechanist” and “vitalist.” 

Vitalism, it should be noted, is one way to characterize theories that posit 

unifying principles, such as souls, to explain purposeful processes within 

living organisms. Although many of the terms of “Romantic” biology, such 

as the Naturphilosphie of the late eighteenth and early nineteenth centuries, 

are not now deemed scientifically respectable, it is well recognized that 

those movements are part of a trajectory continuous with neuroscience 

as we know it today (Zammito 2018). For example, Goethe, while pitting 

himself up against Newton’s theory of color (not respectable!), happened 

19.  Note that in music, the conception of harmony is mathematical due to certain 
ratios of string lengths and sound frequencies, but this feature does not transfer in 
the analogy with ecological organization, where the harmony is not conceived as 
having a mathematical basis.
20.  The verse plays an important role in motivating Malebranche’s occasionalism 
(Jolley 1997, xi), and Berkeley’s idealism in the Dialogues.
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to make important observations concerning the psychology of color sen-

sation. Johannes Müller, noted for his findings on the reflex arc and the 

theory of specific nerve energies, was posthumously criticized for his vital-

ism. He was the mentor of a generation of students, including Hermann 

von Helmholtz and Emil du Bois-Reymond, whose life’s work in physiology 

was to abolish the idea that the living world had any sui generis princi

ples of operation (Otis 2007).21 When the pendulum of fashion pushes 

back against organicist programs, it may well be because their offerings are 

less clear and rigorous than mechanistic, reductionistic ones and hold less 

promise for making nature intelligible through mathematization.22

In Aristotle’s philosophy, the paradigmatic beings (ousias) are organisms 

with a unifying purpose (telos). This is indicative of the nonreductive char-

acter of his philosophy, in that it does not place its first metaphysical foot-

ing in the smallest parts of matter (elements or atoms), but rather in living 

bodies with structural complexity. Teleology, the deployment of purpose 

as a basic explanatory principle, has been thought of as an embarrassment 

of modern biology, although of course the concept can be reengineered 

in terms consistent with Darwinism (Mayr 1988). What we find in neu-

roscience today is that some of its simplifying ideas are centered around 

function and purpose, but this is undergirded by the notion of design in 

artifacts. Indeed, the opening gambit of cybernetics, an interdisciplinary 

movement important to the history of theoretical neuroscience, was the 

attempt to account for teleology in terms of simple feedback mechanisms 

that could be instantiated equally well in a body and a machine (Rosen-

blueth, Wiener, and Bigelow 1943). More commonly now in neuroscience, 

arguments for the importance of functional and top-down approaches are 

accompanied by the computer analogy. The impossibility of understanding 

how computers work just by examination of individual microprocessors, 

21.  They were advocates of physicalism in its original sense of a unity of science 
view (Sebestik 2011). The assertion was that the explanatory principles of physical 
sciences are universal and sufficient for all the other natural and social sciences. This 
denies the autonomy of the other sciences, including biology and psychology.
22.  An example of the oscillation of fashion is to be found in chapter 5. Barlow’s 
(1972) neuron doctrine was written at the high point of reductionism in visual neu-
roscience. We find neuroscientists more recently espousing the importance of multi-
neuron “emergent” effects, as well as the need to factor in the animal-environment 
relationship when designing studies.

Downloaded from http://direct.mit.edu/books/book-pdf/2345162/book_9780262378628.pdf by guest on 25 March 2024



28	 Chapter 1

without reference to design and software, is brought up in various antire-

ductive arguments (e.g., Carandini 2012). What this indicates is that the 

organismic notion of simplicity as unity with a common purpose among 

heterogenous parts has been altered to fit into a basically mechanistic and 

physicalistic worldview.

1.5.3  Docta Ignorantia

For the purposes of this study, we can take the brain to be infinitely complex. 

With its billions of non-identical neurons and trillions of ever-changing syn-

apses, to concede that it is infinitely complex must be more realistic than to 

hope that it is approximately simple. In short, the brain is immensely more 

complex than any of the models and theories that could be simple enough 

to be intelligible to human scientists. In the fifteenth century, Nicholas of 

Cusa employed the term docta ignorantia (knowing ignorance) to refer to the 

stance that we should take toward a target of knowledge that far outstrips 

the capacity of our finite minds, which was for him God.23 The point of 

tutoring one’s ignorance is to gain awareness and clarity about what can and 

cannot be known in order to achieve insight into the limits of one’s knowl-

edge. Cusa applied this apophatic stance of knowing ignorance to empirical 

knowledge of the natural world alongside his theology (Hoff 2013). And it 

is the attitude I suggest we take toward knowledge of hypercomplex objects, 

“divine machines,” such as the brain. Neuroscience, like all science, depends 

on simplification, so we must retain skepticism about the adequacy of mod-

els, theories, and analogies to encompass the fullness of what they aim at. 

The brain, as with countless things in the living world around us, may well 

be as far from what is simple and intelligible to our minds as a star, receding 

light years away, is distant from our view. What is captured by the model, 

like the tiny glimmer in the night, is only a minuscule, fractional drop from 

the immense source to which our sight is directed. What is simple, regular, 

and comprehensible in our picture of the workings of living nature is to be 

recognized as the product of human efforts to hold the infinite in a finite 

cup. This may not be all to the story, but it seems good enough to me, as a 

first approximation.

23.  See Cusanus (1954). Also, see Cranz (1953) for a discussion of this point, includ-
ing Cusa’s borrowing of the term docta ignorantia from St. Augustine.
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1.6  Overview

To some, the recommendation of knowing ignorance will sound like a coun-

sel of despair—an encouragement to investigators to pack up their labs and 

give up on the slow but monumental task of helping neuroscience to pro

gress. But this is to misunderstand the aim of this book, which is not to give 

policy recommendations to neuroscientists but to give philosophers and 

other interested parties some of the understanding that they need to fairly 

interpret neuroscience. If, as will be argued, brain complexity presents an 

insurmountable obstacle to there ever being one unified and general theory 

explaining how the brain gives rise to cognition, this limitation needs to 

be as widely known as the claims made on behalf of the more ambitious 

unifying programs of neuroscientific research. I am not saying that neurosci-

ence is doomed to fail in all of its less ambitious goals, but it is necessary to 

interpret its local successes in the light of their coming about through use of 

an array of simplifying tricks. This provides a counterbalance to common, 

naive readings of experimental and theoretical results, which take them to 

be telling a straightforward story of how the brain just works, applicable 

to everyday cognition as much as to the special circumstances engineered 

within a laboratory or hypothesized in a model.

I grant that as a matter of psychological fact, neuroscientists themselves 

may need to be more committed to general unifying programs, more monis-

tic in their conceptual outlook, and more optimistic about their ability to 

find order in the face of all this complexity than I think is justified by past 

history and current states of affairs. Those of us whose life’s work does not 

rest on the belief that the brain is a problem that the collective, intergenera-

tion efforts of neuroscientists will solve can afford to take an unprejudiced 

view of the feasibility of the more grand challenges. The following chapters 

should be read with this point in mind: the intention is not to change neu-

roscience, but to interpret it.

The next chapter will conclude part I of this book by setting out the core 

philosophy of science ideas at work in the case studies of part II. Given 

the complexity of objects of neuroscientific investigation, a pluralist and 

perspectivist approach to this body of knowledge is to be preferred over a 

standard scientific realism, which takes it that the best-established scientific 

theories are approximately true representations of systems in nature. Stan-

dard realism is not possible, I argue, when those systems are so complex 
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that any scientific categories and concepts employed to describe them are 

the result of active construction of simple patterns and regularities to which 

the theoretical terms refer. The kinds of heterogeneity discussed in this 

chapter show how the brain by itself does not offer a determinate catalog 

of neuronal types and organizational hierarchy. There are multiple, justifi-

able ways of structuring this complexity, and the indeterminacy of typing 

motivates the shift from formal realism, the view that structures represented 

in the best models exist independently of the models, to formal idealism, the 

view that those structures depend on the schematizing efforts of the scien-

tists as much as on the brain itself.

Cautions about the risks of simplification have appeared a few times in 

the history of the neurosciences. Ramón y Cajal (1937, 302–304) wished “to 

warn young men against the invincible attraction of theories which simplify 

and unify seductively.” As a psychologist and philosopher, William James 

was also sensitive to this concern:

The theorizing mind tends always to the oversimplification of its materials. This 

is the root of all that absolutism and one-sided dogmatism by which both phi-

losophy and religion have been infested. (1902, 27)

Chapter 3 will be about an episode in early neuroscience, dating to around 

one hundred years ago, when a simple theory of the organization of brain 

and nervous system came to dominate the field, only to be discarded shortly 

afterward. The dramatic fall of the reflex theory perhaps serves as a cautionary 

tale—what simplification gains in immediate appeal is lost when achieved at 

the expense of adequacy to observable facts.

Chapter 4 is about the theoretical framework that succeeded the reflex 

theory, resting on the idea that the essential neural processes giving rise 

to cognition are computational. The argument will be that computational 

models of the brain serve as simplifying analogies, dependent on the scien-

tist’s selective perception of similarities between neural systems and devices 

doing somewhat comparable tasks. Although a computer is itself a very com-

plex artifact, it is far less complicated than even a small invertebrate brain; 

and because it has been consciously designed and manufactured by people, 

there is awareness of its operating principles. By assuming that the brain is a 

fleshy computer, the neuroscientist gains some explanatory traction in the 

face of otherwise uninterpretable neural signals. The philosophical lesson of 

the study, though, is that we should not fall into the habit of thinking that 
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the brain is literally a computer, since the disanalogies between these two 

kinds of things can not be discounted.

Chapter 5 is about the relationship between experimental practice and 

modeling techniques in computational cognitive neuroscience. Scientists 

measure neural activity during specific behavioral tasks and produce mod-

els that interpret the activity as carrying out certain computations, offering 

explanations of the brain’s involvement in the cognitive performances. The 

computational models are abstract and idealized representations of neural 

activity, but they also depend on simplifications introduced early in the 

experiment-to-model pipeline. I argue that the simplifications introduced 

in experiment and data processing play a crucial role in allowing the mod-

eler to build a mathematical representation of the neural activity that is 

simple enough to be interpretable.

Chapter 6 takes up the contested topic of neural representations. Theories 

in cognitive neuroscience often posit representations in the brain, and their 

status is controversial, generating much debate over whether they meet the 

criteria for genuine representations or if use of this term is only a misleading 

metaphor. I offer a new interpretation of the theory and practice, arguing 

that the positing of neural representations helps to simplify brain research 

by licensing scientists’ focus on the relationships between neural activity and 

events, while neglecting processes within the brain and peripheral nervous 

system.

Chapter 7 is an application of the perspectivist ideas presented in chap-

ter 2. The motor cortex is an area of the brain that has been the site of quite 

wide disagreement about its basic function and operating principles. One 

important theory of the motor cortex is a computational and representational 

one, which posits that individual neurons in this region represent patterns 

of muscle activations or other movement parameters. Another approach 

based on dynamical systems theory has challenged the basic assumptions of 

the representational theory. These two perspectives on the motor cortex are 

in some respects complementary. They each employ a different set of abstrac-

tions and idealizations that have their own justification. One can be ecumen-

ical, so long as neither framework is interpreted as offering the final word on 

the workings of the motor cortex. Given the changeableness of the brain, its 

Heraclitean nature, it cannot be theorized as it is “in itself,” independent of 

quite drastic simplifying assumptions. That is the conclusion of part II of the 

book.
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In part III, I go on to consider the implications of these studies. Chap-

ter 8 takes up the issue of whether there are limits to what neuroscience can 

achieve through its simplifying procedures. The prompt for the question is 

the introduction of machine learning methods for modeling neural systems, 

in which greater predictive accuracy is achieved through less reliance on ide-

alization (although these new models are still very simple, relative to the 

actual brain). The catch is that the models themselves are so complex that 

they cannot be readily comprehended by the scientist. If we think of science 

as the project of attempting to understand natural systems, while at the same 

time devising means to predict and control them, it does seem that it reaches 

a limit to its ambitions in neuroscience: the brain is not simple enough to be 

simultaneously understood and controlled.

The acknowledgment that computational models of the brain, includ-

ing the most advanced artificial neural networks, are highly simplified and 

neglectful of countless neural facts has implications for how claims for AI 

should be interpreted. The idea that consciousness and general intelligence 

can potentially be replicated in inorganic machines depends on the assump-

tion that there is a common computational structure shared between the 

brain and the silicon-based device. However, the analysis of neurocompu-

tational models given in chapter 4 showed that the usefulness of the brain-

computer analogy does not rest on there being such a structure in common. 

In chapter 9, I argue that this gives reason to be doubtful of the promise of 

truly intelligent AI.

Chapter 9 develops an argument for “biological naturalism,” the view 

that consciousness and general intelligence are capacities that animals have 

that depend on the living, material constitution of their nervous systems as 

they operate within the rest of the body. The point is that an artificial device, 

lacking the material complexity of a living system, will not develop these 

capacities. In chapter 10, I further explore the topic of embodied cognition. 

Through a close reading of Herbert Simon’s argument in favor of replication 

of cognitive function in digital computers, we will see that this idea of the 

multiple-realizability of cognition itself rests on a set of simplifying assump-

tions that treat mind, brain, body, and environment as systems that operate 

quasi-independently of one another, such that they can best be theorized in 

isolation. These Cartesian idealizations, as I call them, may find justification 

in the pragmatics of science, but they have been deeply misleading when 

taken up as theoretical commitments within philosophy of mind.
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The conclusion of the book is that greater awareness of the simplifying 

schemas imposed by necessity within science must lead to greater commit-

ment for philosophy of mind to pursue its inquiries in an autonomous man-

ner. Philosophical views about the mind should not be read off from the 

science of the brain because the scientific demands for simplification, manip-

ulation, and control slant the results of investigation in ways that are anti-

thetical to the aims of philosophy. For this reason, naturalistic programs in 

philosophy of mind have a task, so far neglected, to explain when and how 

scientific results can safely inform specific philosophical opinions. My hope 

is that this book will prompt a few readers to make efforts in this direction.
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The task of this chapter is to articulate the epistemological principles that 

will be at work in the rest of the book. I am presenting my framework as 

if it were an established entity rather than arguing for it systematically 

by pointing out its dialectical advantages over rival frameworks, and so 

forth. This is to make the chapter shorter than it would be, and to avoid 

distractions, for really, the vindication of these principles is to come about 

through their application in the body of the text. Those results, I hope, will 

show that this is a framework worth having when trying to make sense of 

the achievements and limitations of neuroscience. Regarding the scope 

of the account, it is motivated by the issues that arise with neuroscience 

and needs some adjustment to be applied to sciences such as cosmology 

and paleobiology, which do not involve interventions on their objects. 

However, I think that the claims about the structures represented in sci-

entific models and theories do generalize beyond neuroscience, especially 

the sciences of extremely complex systems.1 Hence, for ease of exposition, 

I present this as a general philosophy of science, with the caveat that it 

will need modification to be applied to some of the sciences. This situation 

is no worse than with most of the classic general philosophies of science: 

they were tailor-made to physics and could not be generalized without 

some tweaking, if at all.

The reason for devoting this chapter to these foundational issues is to indi-

cate to the reader how my starting assumptions—these initial footholds—are 

arranged quite differently from what it is usually found in the philosophy 

1.  Falkenburg (2007), Lenk (2017), and Chang (2022) present somewhat similar 
accounts that draw from studies of the physical sciences.

2  Footholds
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of neuroscience, especially with regard to scientific realism. It is good to call 

attention to what’s different at the outset in order to offset some misunder-

standings later. This chapter may be of less interest to readers who are not 

academic philosophers. The case studies and core arguments of parts II and 

III should be intelligible even if the reader is not familiar with this chapter. 

At relevant places in the subsequent chapters, where this framework is being 

employed, I will refer back to some of the sections here.

I am presenting an alternative to scientific realism known as haptic real-

ism. While scientific realism asserts that the best-confirmed theories offer 

approximately true representation of how things stand in nature, haptic real-

ism insists that the acquisition of scientific knowledge is an active process 

in which the scientist’s schematization and the work that goes into shaping 

the material target of research leave an indelible imprint on scientific knowl-

edge. This means that scientific representations, theories, and models of sys-

tems in nature should not be interpreted as approximately true accounts of 

those things as they are in themselves, independent of interaction with the 

scientist.

The idea is that there is an incoherence in the presumption of stan-

dard scientific realism that scientific knowledge, at its best, could deliver an 

account of nature in itself, purified of any input from human knowers. This 

is an appropriation—not a replication—of Kant’s transcendental idealism, 

and it is motivated by the considerations of complexity that arose in chap-

ter 1. The conclusion there was that whatever regularities and patterns exist 

in nature, most obviously in the living world, they are in themselves vastly 

more complicated than can be mirrored within the finite minds granted to 

human beings. Therefore, it is necessary to give up on the conception of 

the mind as the passive recipient of knowledge, a mirror of at least some of 

nature. The task of knowledge formation is to rig up some fit, some gearing, 

between what amounts to the infinite complexity of natural systems and 

the limited workings of human cognition. Such a fit can be achieved only 

by the ordering, structuring, and simplification of whatever patterns are 

suggested via empirical observation.

The difference between standard scientific realism and haptic realism 

turns on a point of metaphysics, which is ultimately theological. In Leibniz’s 

philosophy, the universe runs on a rational plan. It is prepackaged by God 

such that it is (at least in part) cognizable to the finite human mind. Indeed, 

Leibniz followed a Platonic tradition in linking scientific and mathematical 
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knowledge to divine understanding—they are treated “as an approximation 

to divine thought” (Martin 1951/1955, 7). Gottfried Martin here argues that 

Leibniz is the point of departure for Kant’s philosophy, beginning with a 

suspicion that Leibniz’s account of being and knowing is rather too optimis-

tic.2 The result of Kant’s inquiry is that the finite rational knower has the job 

of doing the packaging that makes nature intelligible. Simplicity in nature, 

which is to say systematicity, unity, and order, turn out not to be discover-

ables, but demands of human reason. For example, Kant proposes that the 

search for a more and more unified account of forces—we may note here 

that research on a “grand unified theory” in physics is an ongoing case of 

scientists’ striving after simplicity in nature (see section 1.5.1 of chapter 1)—

is mandated by “reason’s logical principle,” which, “calls upon us to bring 

about such unity as completely as possible” (Kant 1787/1929, A649/B677, 

quoted and discussed in Longuenesse 1993/1998, 151).

This chapter argues that science always presents its object through a 

schematizing medium—a set of formal concepts, a quantitative model, 

or an evocative analogy. Because nature is so complex, it affords multiple 

justifiable ways of representing each of its inhabitants. This motivates the 

approach known as perspectivism in philosophy of science: there is a plural-

ity of possible, empirically confirmed scientific views on any given object 

of investigation. The existence of one perspective does not by itself conflict 

with or invalidate another, but neither can claim to deliver the absolute 

truth about their subject matter.

Furthermore, scientific perspectives are differentiated by the various aims 

of inquiry. Neurobiologists aiming to treat memory loss will develop an 

account of the hippocampus that is incongruent with a theory of the same 

brain region produced by researchers in a machine learning collaboration, 

working on artificial cognitive agents. Neuroscientific knowledge is not 

absolute—an approach to how things stand with the “brain-in-itself”—nor 

2.  Martin (1951/1955, 60–63) later discusses Kant’s case against the “theological 
foundation of truth” presupposed by Plato, Augustine, Malebranche, Newton, and 
Leibniz. Kant’s argument comes through in the antinomies of the Transcendental 
Dialectic in the first Critique:

If it is true that the world is both finite and infinite, that it contains both atoms and matter 
which occupies space continuously, the never-ending conflict of these antinomic characters 
of the world could not come from God’s thinking. They must in principle come from human 
thinking. (62)
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is it disinterested. Haptic realism is committed to the view that scientific 

knowledge is as much about creating effects as it is about understanding, 

that representing nature scientifically, and intervening in it, are two sides 

of the same enterprise.

2.1  Haptic Realism/Formal Idealism

Language can be literal, science certain, in an Aristotelian world, but in no other. 

For in no other world do things speak to us, of themselves, each in its own kind, 

without our first invoking and evoking them. We, as Kant showed us, must by 

our categorizing contribute to the making of the world we know.

—Marjorie Grene (1963, 238)

Scientific realism asserts that the world has a determinate, mind-independent 

structure; that scientific theories are to be interpreted literally, as truth-apt 

representations of their target domain; and that well-established and predic-

tively successful scientific theories are approximately true representations of 

their targets such that observable and unobservable entities posited by those 

theories actually exist.3 For example, the well-established and predictively 

successful theories of nuclear physics posit that there are such entities as pro-

tons and neutrons comprising the nucleus of larger entities called atoms; these 

particles are part of the furniture of the world as it is, independently of scien-

tific activity and conceptualization; this account is to be taken at face value, 

as a description of these unobservable particles, and given the maturity and 

accuracy of the theory in predicting observable data in physics experiments, 

it should also be credited as being approximately true. Scientific realism has 

been the dominant stance in postwar Anglophone philosophy of science, 

including philosophy of neuroscience.4 It is an unreflected background 

3.  This sentence paraphrases the three theses, metaphysical, semantic, and epistemic, 
which jointly make up scientific realism, according to (Psillos 1999, xix). One quali-
fication made by Psillos is that the entities said to “inhabit the world” need only be 
very similar to those posited, not exactly like them.
4.  For overviews of what is now a wide collection of theories, see Psillos (1999) and 
Chakravartty (2007). The dialectical opponent of scientific realism is normally taken 
to be logical empiricism or instrumentalism,rather than the kind of Kantian view 
presented here. However, Kuhnian constructivism, which was itself very influential, 
can be placed in the Kantian tradition.
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assumption of many other branches of philosophy today, not least naturalis-

tic philosophy of mind. The root conception of scientific knowledge, at work 

in realism, is that of a mirror being held up to nature: the world is out there, 

and it is the task of science to receive an image of it. If it is a simplistic view of 

scientific knowledge, this stems more fundamentally from a belief in the sim-

plicity of the world to be discovered by science. It is assumed that the wealth 

of things and processes and events in nature is well demarcated and regular, 

independently of people and their science, and these predefined structures 

are of a straightforward enough kind to be absorbed and comprehended, 

without distortion, within the necessarily limited scope of collective human 

cognition. While it is not assumed that any theory yet devised has in it an 

image of nature in its totality, the approximately true ones are thought to be 

piecemeal approaches to a completed picture. It is consistent with scientific 

realism that science could one day deliver a univocal, all-encompassing, and 

true representation of the natural world.5

The alternative to scientific realism is best initiated by rejecting the visual 

metaphor that grounds it. Nature is immeasurably complicated, and scien-

tific knowledge is acquired not through passive absorption, but rather by 

actively grappling with things, cutting them down to manageable size.6 The 

alternative conception is centered on the metaphor of touch. A key feature 

of touch is that the fact of contact or some kind of interaction between skin 

and the perceived object is undeniable. To explore the world through touch, 

we must move around, reach, and grasp things in particular ways, leaving 

our traces on those things. In addition, sensing by touch is more often than 

not linked to the performance of some deliberate action. You might tap and 

rotate a melon to gauge how hard it is, the best angle to cut into it, and how 

much force to use to do so. These are characteristics of touch that, accord-

ing to Jonas (1954, 514), most distinguish its phenomenology from that of 

vision:

5.  Nancy Cartwright (1999) would be an exception here: she is a scientific realist 
who does not accept the fundamental simplicity of nature. Her world is instead “dap-
pled,” and representations of it must also be.
6.  See Teller (2018) for another argument to the effect that acknowledgment of the 
complexity of the world is incompatible with standard scientific realism. There is 
also overlap with the constructive nominalism of Elgin (2019).
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The very coming into play of this sense already changes the situation between 

me and the object. . . . ​We therefore do not have in touch that clear separation 

between the theoretical function of information and the practical conduct, freely 

based on it, that we have in vision.

The hand is both the primary sense organ for touch and our foremost 

means for affecting changes in the world—the root of the word “manipula-

tion” is the Latin for “hand.” I suggest we think of scientific practice—and 

the theories and models that spring from it—along the very same lines. In 

other words, we should reject the traditional realist’s conception of knowl-

edge attainment as the picturing of objective facts, with its ideal of disinter-

estedness. Scientists learn about the world through tinkering and interacting 

with it, and these learning practices are bound up with their practical inten-

tions. They learn about their objects and systems because of their haphazard 

and human-centered engagements with things, not in spite of them.

I have called this picture “haptic realism” (Chirimuuta 2016, 2023c).7 It is a 

kind of realism simply because it grants that knowledge has a basis in a world 

beyond the scientist, and the social networks that the scientist inhabits. This 

is the minimum commitment of realism. However, it rejects the usual claim 

of realism to there being, in the best cases, some epistemic relationship with 

a stratum of being that is entirely human- and mind-independent. I suggest 

now that this version of realism can also be taken as a kind of transcenden-

tal idealism. It grants that things exist beyond the human mind, but it also 

holds that we cannot know them as they are in themselves, as they are not in 

respect to relations with the human cognizers.8 In short, the assertion is that 

7.  The 2016 paper discusses precedents for the account, including Helmholtz and prag-
matist philosophers of science such as Ian Hacking (1983) and Hasok Chang (2012). A 
similar account is the scheme-interpretationist scientific realism of Hans Lenk, who also 
refers to transcendental idealism and employs the haptic metaphor quite frequently:

Any “graspability” whatsoever is interpretation-laden. The world is real, but (any description 
and action of) ‘grasping’ the world is always interpretative, i.e. only conceived of and formed 
by scheme-interpretation. It is furthermore internally action-bound and deeply societal. 
(Lenk 2017, 274; and also see Lenk 2019)

His reference to “schemas” is comparable to my use of “forms.”.
8.  My uptake of transcendental idealism has been informed by the “modest metaphys-
ical interpretation” of Allais (2015). In my first presentation of haptic realism (Chir-
imuuta 2016), I made heavy use of Giere’s (2006b) analogy between color vision and 
perspectival scientific knowledge. When we come to identify an object by learning its 
color, our knowledge depends on a relational property of the object (i.e., how it affects 
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what the knower brings to the interaction from which scientific knowledge 

comes about is ineliminable; the goals, idiosyncrasies, and constraints that 

flow from the knower cannot be removed from this knowledge by a process 

of purification. Science is not an absolute knowledge, a knowledge that has 

no relation to the human condition, a representation of mind-independent 

nature as it exists regardless of the presence of the minds that represent it. To 

aspire to empirical knowledge of things in themselves is to subscribe to an 

incoherent account of knowledge, which is to say, one that leads to skepti-

cism.9 That, to me, is the point of transcendental idealism.

2.1.1  Kant’s Hylomorphism

Kant glossed his transcendental idealism as a “formal idealism” (1781/1787​/​

1998, B519n) to distinguish himself from the Berkeleian idealist for whom 

all that exists is sensation or spirit of some sort. By taking up this notion of 

formal idealism, it will be all the more clear how my proposed framework 

is to rest on the considerations of complexity and simplification that were 

introduced in chapter 1.10 The relevant notion of “form” here is the one that 

pairs with “matter” in the hylomorphic theory made famous by Aristotle. 

our spectrally sensitive visual system). Generalizing this, one can think of all knowl-
edge as restricted to the properties that relate things to human beings and their instru-
ments. Indeed, it is incoherent to claim empirical knowledge of something except by 
its affecting you or bearing a relation to you in some way. Hence, knowledge of objects 
as they are in themselves—as bearers only of properties unrelated to knowing subjects—
is ruled out. The secondary-quality analogy for transcendental idealism, offered by 
Kant in the Prolegomenon, forms the basis of Allais’s reading. A valid concern about 
transcendental idealism is that it demands a fundamental division between the human 
knower and the ultimate, nonhuman grounds of empirical knowledge. So while I take 
this Kantian approach to be the best way to account for the possibility and limitations 
of exact, scientific knowledge of nature, noting that science is deeply informed by the 
supposition of a division between the human knower and the known world, I do not 
take it to be conclusive on the matter of knowledge more generally.
9.  Here, we can take Kant’s epistemology to be a response to the Cartesian skeptical 
predicament. If one makes immediacy a condition of knowledge—lack of an inter-
active process by which the subject engages with the object of knowledge—then it 
turns out that what one may know without doubt of its existence is restricted to the 
content of one’s own consciousness, which is presumed to be known immediately; 
hence, there is doubt about the existence of a world beyond the mind.
10.  Indeed, my treatment of the notion should be understood as a taking-up, or appro-
priation, for new philosophical purposes. Hence, the exposition will be cursory and 
superficial, in comparison with what should be expected in a work aiming at historical 
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Aristotle was a formal realist in the sense that he took forms to be there in the 

world, not inherently related to anyone knowing them. Every natural sub-

stance, such as a particular organism (e.g., a pine tree growing in the park), 

is a composite of form and matter. Hylomorphism, though not confined to 

living beings, speaks to the problem of how to make sense of the stability 

and identity of organisms in spite of the flux of material that passes through 

them as they grow and ingest. Form, while inseparable from the matter of the 

entity and not a distinct part of it, is what orchestrates the matter into main-

tenance of the persistent organism. As Grene (1963, 120) relates, “being must 

control becoming.” Movement and change of matter in the natural world are 

always directed toward the fixed points that are the forms.

It is because of the forms that the natural world is, for Aristotle, in a deep 

way intelligible, which is to say that one can come to know the essences 

of things. The scholastic maxim was that forma dat esse rei—the essence of 

the thing resides in its form.11 A further way to consider the connection 

between form and intelligibility is to note that an Aristotelian substance is 

a self-standing entity, and this determinateness is due to its having a form. 

Something with a form is delimited, bounded; it is set out from the rest of 

all that is, and knowable independently. As readers of the critical philosophy 

will soon encounter, the form/matter distinction is employed frequently by 

Kant. But form is there attributed to our faculties working on the matter of 

sensation (Pippin 1982, 30–39). It is the determining, delimiting activity of 

the mind that gives form to the matter that comes from our sensory organs.12 

“Form,” as Pippin (1982, 13) relates, “is not itself an object of knowledge 

but a ‘condition’ for knowledge.” Thus we have the basic difference between 

formal realism and Kant’s formal idealism.

scholarship. See Pippin (1982), Longenuesse (1998), and Boyle (unpublished) for proper 
discussions of Kant’s hylomorphism.
11.  Kant’s commentary on this is discussed by Pippin (1982, 12) and Boyle (unpub-
lished, 1).
12.  A detail to be noted here is that the form/matter relationship does not occur just 
at one level, referring to the contribution of the understanding as opposed to sensa-
tions delivered from intuition, but rather at multiple levels, to invoke what it is that 
thought is doing (namely, determining its object): “All thinking is an activity of deter-
mining (giving form to) a determinable (matter)” (Longuenesse 1998, 148; emphasis in 
original).
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An intuitive illustration of this idea comes from considering the perceptual 

constancies.13 The proximal stimulation of our sensory organs—the response 

of our retina or hair cells to light and sound—is an indeterminate flux of 

heterogeneous, ever-changing activity. Stable objects are not just given to 

us at the point of sensory transduction. The instability of basic visual sensa-

tion is somewhat apparent if we force ourselves to take the “painterly eye” 

and notice all the variation in light and shadow and shades of color that 

the visual world contains. Sensory experience affords knowledge insofar as it 

can be given form, which means that similarities and regularities in the flow 

of sensation are appropriately categorized as recurrences of the same object. 

The visual system is endowed with light and color constancy, which achieves 

exactly this shaping of indeterminate proximal stimulation into determi-

nate, stable, and separate objects that are then taken to be the distal causes of 

your raw sensory responses.

There are some parallels to be drawn between this perceptual example and 

the generation of scientific knowledge, in this Kantian account. But it is impor

tant to note a difference. With a case like the color-constant perception of a 

book on a table, bathed in dappled light, common sense takes it for granted 

that there is a stable, persistent object, the book, which is the distal cause of the 

unstable sensations and is recovered in constant perception. The view about 

science that I encourage the reader to entertain is that it should not be taken 

for granted that the regular, persisting patterns resulting from the process of 

scientific investigation are simply there in nature, conditioning the investiga-

tion and being recovered when the process is successful, as opposed to the 

stability and regularity being necessitated by the activity of scientific thought 

(individual and collective) when it works on observational data that call for 

further determination. As in the perceptual case, the determining work of cog-

nition is required for there to be an experience of the world as stable and reg-

ular. But to subscribe to formal idealism about scientific knowledge, we must 

decline to think of the achievement of stable and regular objects of knowledge 

as amounting to the recovery of some preexisting patterns and objects.

13.  Cf. Burge (2010), who argues, along Kant-influenced lines, that the capacity for 
constancy is what first enables any animal to perceive the world as containing dis-
crete, stable objects, as opposed to experiencing a flux of sensations. Again, nothing 
turns here on whether this is true to Kant’s original philosophy.
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A few observations will show why the more radical stance is actually quite 

apt once complexity in nature is fully appreciated. In chapter  1, we saw 

that complex systems present an ever-changing array of seeming regulari-

ties amid apparent randomness. Among living things, no phenomenon ever 

exactly repeats, and no organism stays precisely the same. The brain offers 

an extreme example of this complexity and changeability. Scientific catego-

rization can be analogized to putting a low-pass filter over a subtly varying 

pattern, highlighting the somewhat regular repetitions, masking differences 

and irregularities, thus yielding kinds and lawlike behavior among the phe-

nomena. Under Aristotle’s formal realism, it was assumed that the ordering 

presence of fixed forms was a feature in nature, waiting to be known. But as 

Marjorie Grene points out, we are not dealing with Aristotle’s world, which 

was a simpler one, since beings were fixed. Contemporary scientific realism 

is in its own way committed to formal realism, the assumption of a recover-

able simplicity in nature, exemplified by “natural kind structure,” or “joint-

cutting” types of beings, underlying the flux of particularities. Yet our world 

is heterogeneous, flowing, complex.14 In other words, if our starting point is 

the acknowledgment that the natural world, which is the target of scientific 

knowledge, is vastly complex, it is better to conclude that the high regular-

ity and simplicity found within scientific representations are the result of 

regularization and simplification, not the discovery of order hidden beneath 

disordered appearances. Formal realism supposes a preexisting simplicity in 

nature, and absent that assumption, formal idealism is the route to take.

I will finish here with some refinements and caveats. First, it is impor

tant to appreciate that the form-giving role of scientific thought is not just 

that of filtering, letting through some details of the data and leaving out 

the rest (cf. Danks 2020, 129). Rather, it is an active shaping of patterns that 

are only enchoate in the data (hence determinable) and could be formed 

14.  Cf. Grene (1963, 237): “Can we not . . . ​have Aristotelian predication in a flow-
ing world? Of course not.”

I am asserting here that changeability, the temporal heterogeneity of the living 
world, is manifest to observation, just from examining what organisms are like, and 
does not depend on inference from sophisticated theories. So it is not just that species 
are mutable, as is to be inferred from the theory of natural selection, but that change-
ability is a pervasive and readily apparent feature of living systems. This is the lesson of 
“process biology” (Dupré and Nicholson 2018), and also see chapter 7 on how neuro-
science instantiates this lesson.
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in various alternative ways. The path that the determination takes is itself 

shaped by the goals of inquiry. The various practical activities that a scien-

tific investigation is related to will influence the concepts employed both 

in the production and interpretation of data, and therefore bring about a 

distinctive perspective on the target of investigation. More will be said on 

perspectives in a moment. Second, I do not mean to claim here that all the 

regularity presented in scientific models and theories is an imprint of these 

formal determinations. This notion of “imposition” is the wrong way to 

read haptic realism. I refer again to interaction, which is the guiding idea. 

With these scenarios of cyclical interaction, it is impossible to extract the 

contribution of the knower, on the one hand, and the target of knowledge, 

on the other. Thus I am not asserting that world is formless, absent deter-

mination by human cognizers.15 What I am saying is that the forms and 

15.  An absolutely formless world would be one in which there were no systems or 
entities delineated against one another. This would be a world of homogeneous 
mutual dependency, in which no thing is differentiable from its background context. 
Merleau-Ponty (1942/1967, 43) remarks that it is a condition of the possibility of sci-
ence that the world is not like this: “If everything really depended upon everything 
else, in the organism as well as in nature, there would be no laws and no science.”

He follows with the interesting observation that different traditions of science have 
taken different positions on the spectrum between conceiving of nature and individ-
ual organisms, as integrated, undifferentiated unities, and as collections of sharply 
delineated structures and substructures. The former view is expressed in post-Kantian 
Romantic biology, and the latter in the mechanistic physiology of the reflex, which 
will be the topic of chapter 3. Gestalt psychology, he notes, is in an intermediate posi-
tion between these two extremes.

It seems to me that the truth is indeed likely to be in the middle ground. The cri-
tique of mechanistic physiology, as we will see in chapter 3, rests on the point that it 
exaggerates the sharpness of delineations between subsystems of the animal through 
experimental interventions that physically separate one part of the body from the 
other, procedures such as lesioning parts of the nervous system. This is a way to bring 
about determination, so it is a simplifying strategy. Yet, says Merleau-Ponty, what is 
revealed is an organism in a pathological state. Belief in the simplicity of nature—
which is manifest in the view that I call formal realism—engenders the mistake of 
thinking that the constructed, pathological state is a faithful model for how the organ-
ism operates when left to its own devices. To digress further, it is worth asking how 
many of today’s ecological crises involve precisely this underestimation of the inte-
grated operations of nature as a whole. To think that nature comes ready-made into 
isolatable modules for research and manipulation is to grant it a high degree of inher-
ent simplicity and intelligibility. But if this is the wrong assumption to make, people 
will find themselves caught on a perpetual treadmill of performing what they think 
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regularities that are simple enough to be intelligible to the scientist, and 

represented in their models and theories, should not be taken to exist inde

pendently of this work. These regularities, the products of this interaction, 

are what I will refer to in chapters 4 and 5 as ideal patterns, as opposed to real 

patterns, the ones assumed to exist independently.16 Third, given people’s 

interests and goals, not any simplification will be helpful. The challenge of 

science is to find simplifications that will work as desired. As such, the ideal 

patterns that are accepted and established by the scientific community are 

constrained by inherent features of the target system in conjunction with 

the goals of research.

2.1.2  Perspectivism

Mary Hesse, with reference to Gottfried Martin (1951/1955), makes Kant 

the originator of the view that natural science can do no more than present 

the world through the medium of models and loose analogies:

It is plausible to interpret his [Kant’s] attitude to theoretical science. . . . ​in terms 

of possible models which are ways in which we think about the world, but which 

may not and sometimes cannot be literal descriptions of the world, and in any 

case can never be known to be such descriptions. This attitude leaves the scientist 

free, as Kant remarks in connection with theories of void or plenum, to adopt the 

theory which is convenient. (Hesse 1962, 172)

We see here a close connection between the rejection of the scientific real-

ist’s aspiration for theories to be literal, true descriptions of their targets, and 

a more liberal view, which grants that any one subject matter may afford 

representation with a range of suitable theories. The result is a perspectival 

pluralism that I characterize as the claim that there can be, within science, 

multiple research traditions and modeling approaches that all target the 

same systems, but rest on incompatible simplifying assumptions and result 

in unrecognizably different descriptions of their domains. The differences 

between perspectives are conditioned by historical and cultural factors, as 

well as pragmatic factors such as the convenience of use of one formalism 

over another.

are local interventions, which actually have further consequences well beyond the 
intended domain of impact, and are not predictable because they fall outside the scope 
of scientific awareness—outside the set of factors that their implicit metaphysics tells 
them could be relevant.
16.  See Chirimuuta (2023) for the comparison of ideal patterns to the “real patterns” 
of Dennett (1991). These are all indeed “quasi real.”
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Perspectivism is a popular approach within current philosophy of science. 

It is a broad church bound together by the thought that scientific knowl-

edge is situated within a historical era and social context (Massimi 2018c, 

164). In other words, scientific knowledge comes from a perspective and is 

not a view-from-nowhere, in spite of the attraction of the idea that science 

involves a transcendence of what is anthropocentric in the experience and 

understanding of nature, as well as the hope that at its best, science obtains 

a view on reality that could claim universal assent, even among alien beings. 

We should note how the more modest approach to science is reinforced by 

acknowledgment of complexity and the need for simplification. Knowledge 

of the sort apprehended from the God’s-eye view would be possible only 

if the human mind were infinite or if nature were so simple that it could 

be grasped in its entirety by collectives of finite minds. The first supposi-

tion is obviously not tenable, and the second may have seemed plausible 

on the heels of rapid advance in the theorization of relatively simple physi-

cal systems, but its likelihood fades the more that scientists aspire to com-

prehensive theories of complex living things. The ubiquity of simplification 

in science is the ever-present mark of its being the activity and product of 

limited, situated beings. God, we may conjecture, would have no need for 

abstraction and idealization.

The version of perspectivism advocated by Massimi is far closer to sci-

entific realism than the one I advance.17 Massimi’s perspectival realism 

accepts the idea that there is a human- and mind-independent world, 

and truth involves correspondence with it—in Massimi’s terms, there are 

“perspective independent facts” (2018, 170–171, n2). Furthermore, she 

endorses the scientific realist’s semantic tenet that the language of science 

should be interpreted literally, a view that I will criticize in section 2.2.1 and 

chapter 4. According to Massimi, it is a mistake to entertain the idea that 

perspectives in some way shape facts. However, once it is clear that this 

shaping has to do with the determination of categories and regularities 

among the many that are suggested by observational data—data that are 

frustratingly ambiguous and plurivocal, only yielding discernible patterns 

after pruning and massaging—then it is also apparent that rejection of the 

realist metaphysics is not some off-the-wall constructivism. All it does is call 

into question the “ready-made reality” of knowable objects (Chang 2020, 

17.  See Massimi (2022) for a comprehensive statement of perspectival realism. See 
Chirimuuta (2020b) for further discussion of the points of disagreement.
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22), and propose that the acquisition of knowledge is as much about struc-

turing as it is about the detection of structures.

At the start of his Philosophy of Symbolic Forms (vol. 3), Cassirer dwells on 

how compelling is the feeling that if knowing is mediated by forms that the 

subject brings with them, knowledge should still aspire somehow to get at 

how reality is independently of those forms:

It would seem as though we could apprehend reality only in the particularity of 

these forms, whence it follows that in these forms reality is cloaked as well as 

revealed. The same basic functions which give the world of the spirit [Geist] its 

determinacy, its imprint, its character, appear on the other side to be so many 

refractions which an intrinsically unitary and unique being undergoes as soon as 

it is perceived and assimilated by a “subject.”

. . .

Again and again, the basic drive of knowledge makes itself felt: the drive to 

unveil the veiled image of Sais and behold the naked, unadorned truth. The 

philosopher desires to apprehend the world as an absolute unity; he hopes ulti-

mately to break down all diversity, and particularly the diversity of symbols: to 

discern the ultimate reality, the reality of “being” itself. (1929/1957, 1)

Still, it is axiomatic for Cassirer that all knowledge is mediated by “symbolic 

forms,” that to philosophy, the “paradise of immediacy is closed” (Cassirer 

1929/1957, 40). This rejection of the immediacy aspired to in the correspon-

dence model of truth will be axiomatic for this study of scientific knowledge, 

too. So how to get rid of the aspiration for scientific knowledge that it should 

at least aim to correspond with “the reality of ‘being’ itself,” unadulterated? 

Once again, shifting from a visual to a tactile metaphor is a helpful way to but-

tress against traditional realist instincts. The metaphors of perspectives and 

refractive media are, of course, visual. It pays to supplement these by thinking 

about how this knowledge is touchlike. What comes across is that we can 

know the empirical world only by virtue of being there, part of it, being able 

to pick things up and play about with them. Thus, it is not plausible to set up 

the world as it is independently of the human situation, our actual engage-

ment with it, as the object for empirical knowledge.18

18.  I am talking here of what is plausible in a philosophical interpretation of scientific 
knowledge. I grant that it may be expedient for scientists to aim at a very high standard 
of objectivity in their representations, even if they can never transcend their human 
situation. In many cases, it may be a good research heuristic to aim at theoretical uni-
fication and not settle for a plurality of perspectives, even if full unification is not a 
realizable goal.
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Under haptic realism, scientific theories and models are handlike. Hands 

are both sensory receptors and motor effectors. And it is not just that the 

hand is a multitasking device, switching between these two operations. Its 

sensory and motor roles are intertwined—how the hand senses is molded by 

what it needs to do, and vice versa. In the same way, the epistemic and the 

instrumental roles of scientific theories and models mutually condition one 

another. There is no such thing as pure, disinterested science because there 

is no way to extricate scientific knowledge from its relation to practical pur-

poses. This reinforces the point that different traditions of scientific research 

(i.e., perspectives) coalesce around different aims of inquiry, though in some 

cases, practical problems will foster integration of perspectives (Mitchell 

2020).

In its formulation by Ron Giere, perspectivism was intended as a via media 

between “objectivist” scientific realism, which claims that theories can in 

principle provide “a complete and literally correct picture of the world itself” 

(Giere 2006b, 6), and a constructivist antirealism that asserts that “scientific 

claims about any reality beyond that of ordinary experience are merely social 

conventions” (Giere 2006a, 26). Likewise, in my view, science can neither 

deliver an objective, univocal truth nor is it just conventional in its represen

tation of things beyond ordinary observation. However, a via media, it must 

be said, is a path on the same plane as the two ones that it goes between. To 

end this part of the chapter, I will now discuss how the proposed view actu-

ally stands out in greater relief against scientific realism and its traditional 

antagonist, empiricist antirealism.

2.1.3  Standing Out against Scientific Realism and Empiricism

Most presentations of scientific realism set it out only in relation to the 

tradition of logical positivism, empiricism, and instrumentalism, made 

famous by the Vienna Circle, and against which postwar realism reacted. 

This is unfortunate because restricting ourselves to these two options has 

constrained the discussion of the questions of what scientific theories and 

models tell us about the world and about how they should be interpreted. 

The standard dialectical plane can be envisaged as having one axis, the realist 

one, with which it is asserted that the representational content and truth apt-

ness of scientific theories outstrip what is given observationally, and another 

axis, the empiricist one, by which it is asserted that the empirical given—the 

observed data—suffices to fix the representational content and give the truth 

conditions for a theory. With this two-dimensional plane in mind, it falls 
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to perspectivism (insofar as following the middle path) to accept different 

strands of both the realist and empiricist positions, thus taking up the space 

in between them—for example, by endorsing the realist proposal that the 

representational content of scientific theories outstrips the empirical given, 

while siding with the empiricist in setting the criterion of truth of the theory 

as no more than empirical adequacy.19

However, it needs to be appreciated how much scientific realism and 

empiricism have in common. Their shared starting point is a normative pic-

ture of science being an absorption of natural facts; they differ over whether 

they restrict the facts to empirical observations (empiricism), or whether 

they take those facts to be the unobservable states of affairs that are, in the 

best case, represented by mature theories (scientific realism). It is a concep-

tion of the task of knowledge formation in which it is at its best when it is 

most passive: science succeeds in its epistemic goals when either the empiri-

cal given or unobservable reality impresses on the theory so that scientific 

knowledge can conform to its objects. The Kantian alternative emphasizes, 

instead, activity and the constructive engagement that brings about knowl-

edge. Science, through interaction with things in nature, works to construct 

objects and patterns that conform to its demands. This third axis, which 

asserts that knowledge formation is active, is orthogonal to the realism-

empiricism plane.20 Thus we can appreciate that versions of the Kantian 

alternative—for example, the haptic realism that I am endorsing—can be 

as different from both realism and empiricism as those views are from each 

other. The basic position is that it rejects the passivity that goes with the 

correspondence ideal of truth: the knower has to be doing something and 

be engaged with things for anything to be known scientifically.

19.  This is a hypothetical position, not one I’m attributing to any philosopher in par
ticular. However, a fair amount of the criticism of perspectivism insists precisely on the 
point that perspectivism either collapses into traditional realism (Chakravartty 2010) 
or instrumentalism (Morrison 2011). See the discussions by Chirimuuta (2016) and 
Massimi (2018).
20.  It is doubly unfortunate that the textbook restriction to the scientific realism-
empiricism dialectic neglects the variety of views that took up the Kantian lead—not 
only the neo-Kantianism of philosophers like Cassirer, with its emphasis on the spon-
taneity of the understanding, but also the pragmatist and phenomenologist philoso-
phies of science, which have a strong commitment to construing knowledge formation 
as active. In pragmatism, the intellectual sphere is shaped by the demands of material 
praxis, while phenomenology emphasizes the embodied and embedded character of 
the scientific intellect.
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One payoff of this reorientation is that it helps makes sense of the puzzle 

over how it is that models of physical phenomena can be so successful 

(i.e., yield satisfying explanations, be predictively powerful, and fruitful 

in the development of new experiments and models) while being so full 

of “distortions” such as idealizations and grossly simplifying abstractions. 

Philosophers like Batterman (2010), Bokulich (2012), and Potochnik (2017) 

have frequently argued that these distortions are essential to the models’ 

explanatory success, and yet it has been hard to envisage any connection 

between deliberate distortion and somehow getting a better account of the 

target when thinking within the traditional constraints. Once knowledge-

building activity is acknowledged and emphasized, we can think of models 

as devices that aim to achieve a certain compromise or balance between a 

natural system, the scientific collective mind, and some material purposes. 

Explanatory, predictive, and practical success are a matter of achieving the 

right kind of fit, not of the attainment of a God’s-eye view on the subject. 

There can be various ways to succeed (a plurality of perspectives), and some-

times the best way to achieve alignment between the target system, human 

conceptual resources, and material goals is through deliberate distortion.

Some direct criticisms of scientific realism and empiricism will appear 

later in this book. The empiricism developed by Ernst Mach will be under 

scrutiny in chapters 8 and 9. His mistake was in thinking that science can be 

purged of metaphysical commitments, such as the need to refer to an ontol-

ogy of things beyond the data points. We will see how automated science, 

which uses the massive data-processing capabilities of machine learning, is 

an instantiation of Mach’s ideal, and as such reveals its limitations. Chapter 8 

will also discuss the relationship between science and technology, challeng-

ing the common assumption that there is a nonporous boundary between 

pure and applied science. The primary argument in favor of scientific real-

ism, originally put forward by Hilary Putnam, is that every other account 

leaves the predictive and technological successes of science an inexplicable 

miracle (Psillos 1999, chapter 4). But this assumes that technological success 

can only be a downstream consequence of the acquisition and application 

of true scientific theories. It in fact begs the question since it presumes a real-

ist picture of science—aiming at correspondence with nature and insulated 

from practical concerns—that the argument is supposed to establish. Accord-

ing to haptic realism, the epistemic and the instrumental are two faces of 

the same thing: science. Technological success is attributed to the achieve-

ment of an adequate fit between the constraints stemming from the parts 
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and processes at work in a target system and those due to the limitations of 

human cognition. Technological success is achieved more often than not 

by simplification and deliberate distortions, and for this reason should not 

be taken as dispositive evidence that the theory employed has encapsulated 

some absolute truth about the workings of nature.

2.2  Proceeding with the Account

In this section, I am going through some common points of debate within 

philosophy of science, which will be important in the rest of this book, out-

lining the viewpoints that are provided by haptic realism. I will discuss in 

turn scientific analogy, mechanistic explanation, and scientific understand-

ing and control. A way to sum up, in general terms, the account that unfolds 

over the course of the book is that science is to be conceived as a project of 

domestication in which wild things and processes are altered, reconstructed, 

so that they are knowable and usable for some people’s purposes. This sup-

poses an opposition of the human and the natural that may seem dissonant, 

given that the human brain itself is an object of investigation for neurosci-

ence. The thing to keep in mind is that the distinction is no more than the 

marking of a simple difference between an object that has been worked over, 

subjected to modification through experimental procedures and schema-

tized through modeling, and one left alone. Even in noninvasive neurosci-

entific experiments, such as functional magnetic resonance imaging (fMRI) 

of the human brain, neural activity is altered due to the person being in 

the unusual environment of the scanning tunnel; and the data gathered 

are further subjected to processing so that conclusions may be drawn from 

them. Thus, the distinction between the “natural” or “wild” and the “arti-

ficial” or “worked over” is comparative when employed in this picture of 

scientific activity as domestication. The brain of a genetically modified lab 

mouse is “artificial” compared to that of a field mouse, but that same brain 

is in a “wild” state when the lab mouse is left to its own devices in a cage, 

and again in an “artificial” state when the mouse is made to perform an 

experimental task.

2.2.1  Analogies So Considered

In chapters 4 and 6, I will be drawing on Marry Hesse’s classic work on 

analogies and models in science. Scientific analogies domesticate what is 
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incomprehensible in nature by fixating on similarities with what is to the 

scientist more familiar and better understood (Hesse 1955, 353). Analogical 

inferences are conclusions drawn about the unfamiliar system on the basis 

of its similarity with one that is relatively well characterized. A basic, first-

pass way of thinking about this pattern of inquiry is to take the similarities 

to be preexisting facts about the objects of investigation. Comparing two 

objects, some properties will be shared and others will not be. You might 

picture a Venn diagram where two classes of properties, each associated with 

one of the objects, partially overlap. The greater the extent of the overlap, 

the greater the number of analogical inferences that one may draw, and so 

the more revealing the comparison will be.

Hesse’s early account of analogy did in fact posit an identity of structure 

between an analogy source, the model system, and the analogy target:

The most obvious property of a satisfactory model is that it exhibits an analogy 

with the phenomena to be explained, that is, that there is some identity of struc-

ture between the model and the phenomena. Now one may say in a straightfor-

ward sense that there is an analogy between two branches of physics if the same 

mathematical structure appears in the theory of both, for example, the theories 

of heat and of electrostatics can be formulated in the same equations if one reads 

“temperature” for “potential,” “source of heat” for “positive electric charge,” and 

so on. When there is an analogy of this kind, one theory may be used as a model 

for the other. (Hesse 1962, 22)

Emphasizing that the similarity between model and target could never 

be total, Hesse distinguished between the “positive analogy”—the respects 

in which the two systems are similar or share the same structure—and the 

“negative analogy,” the respects in which they are unlike one another (the 

disanalogies). She gives an example of analogical models closer to the ones 

under discussion in this book when she mentions “electronic tortoises,” 

cybernetic robots that were receiving much publicity at the time. In such 

cases, she writes, “there is an obvious negative analogy in certain biologi-

cal and chemical respects between the model and the animal, but a posi-

tive analogy of unknown amount in some aspects of behaviour” (Hesse 

1962, 24).

This account of analogy presupposes a formal realism—indeed, a structural 

realism in the sense common in philosophy of science these days, whereby 

physical systems really do have the structural features that are represented in 

the well-established mathematical theories used to describe them and predict 

Downloaded from http://direct.mit.edu/books/book-pdf/2345162/book_9780262378628.pdf by guest on 25 March 2024



54	 Chapter 2

their behavior.21 My own account of neuroscientific modeling begins with a 

rejection of formal realism, so the account of analogy will diverge from this 

one. I will not be assuming that epistemically appropriate, useful scientific 

analogies depend upon a preexisting structure in common (a homomor-

phism) between the model and the target system. As discussed previously, 

determining structure in the target of investigation is an active, and to some 

extent constructive, business. The structure that is said to be shared with the 

analogical model is massaged out of the system—it is an ideal pattern; what 

is shared between the brain and a computational model is the ideal pattern, 

an idealized version of neural activity. This means that the predictive and 

explanatory success of the model does not justify the inference that the brain 

is literally performing the computations attributed to it by the model.

My position is consistent with some of the themes from Hesse’s later 

work. She concurs with Hans-Georg Gadamer’s rejection of formal realism, 

his “assumption that no ultimate order can be apparent to finite minds,” 

which motivates the position “that there is a fundamental inexactness of all 

human knowledge,” and therefore that the commonly held ideal of scientific 

language being univocal, literal, and maximally precise, is misguided (Hesse 

1995, 363).22 Instead, Hesse argues that all language, including scientific lan-

guage, is rooted in the figurative rather than the literal (1994, 453) and can 

never completely abandon metaphor and analogy. This does not prevent it 

from conveying knowledge (Hesse 1995, 352) or being the medium for ratio-

nal argument (Hesse 1994, 453). What it does stand against, however, is the 

literal interpretation of scientific models and descriptions and the tendency 

to take scientific accounts of the world as providing a purified account of 

the plain facts, as both positivists and their realist antagonists would have it.

In this way, Hesse’s later work attacked the common idea that there is a 

sharp separation between literal and figurative language, the former being 

21.  The work of contemporary structural realists has frequently referred to the early 
structuralism of Ernst Cassirer. The critical difference is that Cassirer was not a for-
mal realist! While Steven French (2014, 100) thinks that he can pick and choose the 
bits that he likes from Cassirer’s structuralism, a key move he employs, which is to 
let metaphysics be brought into line by epistemology (59–60), is unprincipled unless 
some sort of idealism comes into play. Cassirer’s own “critical idealism” amounts to his 
constant rejection of the correspondence theory of truth.
22.  An interesting point of connection with section  1.5.3  in chapter  1 is that 
Gadamer (1975/2004, 435) aligns this position with the ideas of Nicholas of Cusa.
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factual and the latter expressive. This picture of scientific language, as imbued 

with analogy and metaphor, allows a richer understanding of neuroscientists’ 

use of everyday psychological terms, as well as terms borrowed from the tech-

nical domain of computer science, and has profound implications for how 

philosophers should interpret their theories.23 One recent book addresses the 

question of whether neuroscientists’ ascription of psychological terms like 

“thinks” or “perceives” to neurons instead of whole animals should be taken 

literally or treated as a mere metaphor (Figdor 2018). But according to Hesse’s 

considered account, this is a false dichotomy: even at its most literal, scien-

tific language remains metaphorical in some respects.

This argument ultimately leads back to metaphysics, and indeed theol-

ogy. Leibniz serves as the prime example of how commitment to scientific 

language being ideally literal and univocal—as best achieved via artificial lan-

guages like mathematics—rests on a background worldview in which the uni-

verse is inherently intelligible to human reason because created in that way. 

As Hesse (1962, 159) describes, “Leibniz . . . ​is committed to the belief that 

rationality, that is, intelligibility in detail to the human mind, is part of the 

essence of things, and he therefore requires that descriptions of the ultimate 

structure of matter should be understood literally and not metaphorically.”24 

A worldview like Leibniz’s conditions a certain semantics: terms can have 

maximally precise meanings because the things they refer to are themselves 

precisely demarcated (this being one way to express formal realism). This 

then fosters certain views in philosophy of science. If your semantics tells you 

that the best scientific descriptions can be univocal, literal, and precise, you 

will interpret the preeminent theories and models in a literal way. The theo-

logical and metaphysical foundations are now mostly forgotten, but still a 

basically Leibnizian approach has dominated twentieth-century philosophy 

23.  Of the two major cases of analogy featuring in part II, computers and representa
tions, the latter is much more fuzzily defined. There is no shared definition of neural 
representation among researchers (Vilarroya 2017). This does not by itself undermine 
the practice.
24.  Cf. Gadamer (1975/2004, 416): “The ideal language that Leibniz is pursuing is 
a ‘language’ of reason: an ‘analysis notionum’ which, starting from ‘first’ concepts, 
would develop the whole system of true concepts and so be a copy of the universe of 
beings, just as is the divine reason. In this way, the world—conceived as the calcula-
tion of God, who works out the best among all the possibilities of being—would be 
recalculated by human reason.”
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of science, from Carnap’s fetishization of artificial languages (Friedman 2000, 

Carus 2007) to the scientific realist’s belief that physics is near enough to an 

account of how things just are. In this widely held view, only literal language 

meets the ideals of transparency such that only that mode of representa

tion would be said to deliver a proper understanding of nature. But if we 

live not in Leibniz’s world, but one in which intelligibility to human reason 

is not built into the fabric of things, then we should not expect the basic 

form of language and description of reality to be literal, nor should we retain 

nonmetaphorical language, purified of ambiguity, as the ideal case.

2.2.2  Mechanisms and Perspectives in Neuroscience

“Life understands not death, nor death life.” So said an ancient philosopher. Yet 

in his unceasing desire to diminish the boundaries of the incomprehensible, man 

has always been engaged in attempts to understand death by life and life by death.

—Ernst Mach (1895, 186, translation modified)

The analogy with central status in the history of modern science is that of 

the world, and its inhabitants, as being machine-like. The clockwork uni-

verse gives a generalized picture of cosmology, while the presentation of 

organic bodies as self-moving machines, automata, has had a life of its own 

in the history of biology.25 As Falkenburg (2019, 76) observes, mechanical 

analogies go together with a dissecting methodology, which is one reliant 

on structural and functional decomposition of the target systems—related 

in important ways to the reductionist simplifying strategy discussed in 

chapter 1. A different central analogy, common in premodern natural phi-

losophy, was that of the world being like an organism. The use of the living 

body as an analogy source to conceptualize nonliving material systems is 

now obsolete—although the Gaia hypothesis might be classed as an excep-

tion here since it compares the whole planet, including both living things 

and nonliving weather and geological systems, to an integrated organism. 

According to Hesse, it was the rise in significance of another notion of sim-

plicity in the seventeenth century, one shaped by a revival of Pythagorean 

and atomistic ideas that led to the fading of the world-organism analogy. 

On that notion, attribution of properties to inanimate matter was restricted 

25.  See Riskin (2016) for an extended treatment of automata in the life sciences.
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to plain geometrical and mechanical qualities.26 That said, there is a conti-

nuity between the world-organism picture and antimechanistic approaches 

within modern biology, variously known as organicist, holist, or vitalist. 

These approaches tend to stress the insufficiency of the dissecting method 

whereby organic systems are literally broken into pieces and get their parts 

examined independently of context within the body and ecosystem.27

In the Critique of Pure Reason and Metaphysical Foundations of Natural Sci-

ence, nature is constituted in such a way that Newtonian mechanics is the 

right physics for it—that is, it is a causal nexus of spatiotemporally located 

objects interacting with one another. As such, the “mechanistic worldview” 

appears in Kant’s philosophy,28 but it is important to remember that for Kant, 

this is not an absolute reality. Furthermore, as noted by Cassirer (1950, 211), 

the preeminent position given to mechanistic explanation in Kant’s philoso-

phy is not consistent with developments in twentieth-century physics. Kant’s 

original account has been given a pluralistic treatment by twentieth- and 

twenty-first-century philosophers of science. Along these lines, it is natural 

to say that mechanism is one scientific perspective among others, denying 

it exclusive explanatory rights and declining to ontologize its explanatory 

posits.

This has been the claim of my previous papers, where mechanistic 

approaches were treated as one distinct way of modeling neural processes, 

standing alongside computational and dynamical systems perspectives 

(Chirimuuta 2014, 2018).29 It stands in contrast with the monistic ambitions 

of much of the work on “new mechanism” in philosophy of neuroscience, 

26.  “Such an understanding of simplicity in terms of the minimum number of mathe-
matical variables consistent with the subject-matter, at once rules out organic analogues 
which generally contain more variables than the inorganic situation with which they 
are compared” (Hesse 1962, 99–100).
27.  Examples of these antireductionist arguments will appear in the next chapter. See 
Peterson (2016) on organicism in prewar Britain, and Harrington (1996) on holism in 
Weimar Germany. Vitalism is controversial. The term is normally used disparagingly, 
but see Canguilhem (1965/2008a) and Wolfe and Donohue (2023).
28.  Note that Kant uses the term “mechanistic” to refer to the Cartesian mechanics that 
he rejected, whereas I am using it more generally to include Newtonian (“dynamic”) 
mechanics (Warren 2001).
29.  In those earlier publications, I give more of a literal interpretation of the compu-
tational models than I now think is correct. See also Lee and Dewhurst (2021) on the 
“mechanistic stance” and Buzzoni (2019) on mechanism as a perspective.
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which claims to show that other explanatory frameworks can be subsumed 

within the mechanistic one, to the extent that they offer genuine explana-

tions (e.g., Kaplan 2011). New mechanists have downplayed the role of the 

machine analogy in contemporary science (Craver and Tabery 2017), where 

biological systems are routinely described as mechanisms without comparison 

to any specific artifacts. In my view, “biological mechanism” is not actually 

a dead metaphor, one that can be employed neutrally as not implying any-

thing machine-like (cf. Falkenburg 2019, 85). This is because, as I discussed in 

chapter 1 and elsewhere (Chirimuuta 2020d), the general machine compari-

son underlying the notion of a biological mechanism imports an ontology 

that serves a simplifying purpose. In a machine, the construction is modular 

and the operation of parts (e.g., the causal interactions within a modular sub-

system) can be understood independently of detailed knowledge of the work-

ings of other modules.30 Thus, a machine is, at least in principle, susceptible 

to a form of reductionist, bottom-up explanation in which the whole system 

is decomposed into subsystems and each subsystem is characterized in turn.31 

30.  One can thus see the connection to the characteristics of mechanisms posited 
in natural science. This is clear in a discussion by Dieks (2019, 56) with reference to 
Glennan’s (2002) definition of mechanisms:

“A mechanism for a behavior is a complex system that produces that behavior by the inter-
action of a number of parts, where the interactions between parts can be characterized by 
direct, invariant, change-relating generalizations.”

This definition accords well with the nature of the mechanisms that passed review in our 
historical sketch of classical mechanics. In particular, the behavior to be explained is produced 
by the interactions between the parts; and as Glennan explains, these parts must be objects with 
a high degree of robustness or stability, which are generally spatially localized. The interactions 
bring about changes in the properties of one part as a consequence of changes in the proper-
ties of another (Glennan 2002, 344). . . . . It is important for this new mechanicism, as it was 
for older forms of mechanicism, that the interaction between any two components should be 
the same as in the case in which these components are the only systems present: the interac-
tions should not be ‘holistic’, depending on the behaviour of the complex system that is to be 
explained. The mechanistic intuition is that the global system should be reducible to its parts.

Against those who endorse a less restrictive characterization of mechanisms in 
biology, not requiring the system to be decomposable or have localization of func-
tion, I would respond, with Silbertstein (2021) and Taylor (2021), that this makes the 
notion of biological mechanism quite vacuous.
31.  Note, however, that the understanding or reverse engineering of a machine 
of any complexity depends on a top-down approach as well, referring to the func-
tion of the entire system (Dennett 1995). Only the causal interactions within the 
simplest machines can be comprehended without any reference to overall function. 
Most of the mechanistic explanations discussed in the philosophy of neuroscience 
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But there is good reason to think that this approach, when imported into 

biology, underestimates the amount of integration and context-dependency 

at play in organic systems (Green, Serban, et al. 2018, 1752; Silberstein 2021). 

As such, the mechanistic description of a living process should be treated as 

only a first approximation.

Bill Bechtel is one philosopher of biology and neuroscience whose account 

has been in this vein. He treats mechanisms as models that idealize, and 

hence produce explanations by way of simplification. The key move is in 

positing that a biological system is bounded, in terms of the number and spa-

tial and temporal scales of the processes that affect it, such that the researcher 

considers only a small number of the system’s actual interactions. A set of 

entities and activities in a living system can only be taken to be a mechanism 

following the imposition of some hypothetical boundaries. Since the model 

of the bounded system misrepresents the number of interactions that are 

known to occur, Bechtel classifies it as an idealization: “While not arbitrary, 

mechanism posits are nonetheless idealizations in that they misrepresent 

the behavior of the mechanism as due solely to its components and their 

organization; they neglect the roles interactions with other entities play in 

determining the mechanism’s behavior.” (2015, 85)

Bechtel notes that it is not practically possible to extend the posited 

boundaries too much before the system becomes unworkable as a target 

of investigation. A mechanistic explanation, in Bechtel’s epistemic sense, 

could not include all the factors relevant to the behavior of the system.

My endorsement of Bechtel’s account, consistent with the Kantian posi-

tion outlined in this chapter, is to be taken as read. Furthermore, my position 

aligns with interpretations of mechanistic explanation in neuroscience that 

depend on an epistemic theory of causality, rather than the view that causal 

relationships simply exist in objects of investigation (Falkenburg 2012; Taylor 

2021). On this modernized Kantian account, people make causal claims not 

because they have latched onto some mind-independent causal connection, 

but because they have learned some facts about their environment that are 

are therefore “multilevel,” involving characterization of the whole system as well as 
at various levels of subsystem. For this reason, proponents of mechanistic explana-
tion emphasize the difference between that and reductionist explanation (Craver 
2007, 9–16). See Bickle (2008) for a more favorable account of reductionism in 
neurobiology.
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most conveniently exploited for practical purposes if represented as causal 

dependencies (Williamson 2004, chapter 9).

This picture is in the background of my account in chapter 6 on the com-

plementarity of explanations in neuroscience that posit either intentional or 

causal relationships between neural activations and the stimuli that are asso-

ciated with them. Chapter 3 will examine the limitations of the mechanistic 

simplifying strategy that was employed in the now-defunct reflex theory of 

the nervous system. Since mechanistic explanation in contemporary neuro-

science has already received a disproportionate amount of attention, I will 

not be focusing on it in part II. The distinct perspective offered by dynamical 

systems theory will be considered in chapter 7.

2.2.3  Explanation, Understanding, and Control

Much previous work in philosophy of neuroscience, including my own, has 

focused on questions of explanation: What are the norms for satisfactory expla-

nation? Does all explanation refer to causes? Can abstract and idealized models 

still explain things? In this book, I will be changing the target slightly, with 

more of an emphasis on scientific understanding and on the instrumental 

goal of neuroscience, which is acquisition of the ability to control the work-

ings of the brain. I take these to be the two core aims of the research, and 

in chapter 8 I will show how this conception follows from a more general 

account of the origins of modern science. It is important to appreciate here 

that understanding and control, the epistemic and instrumental aims, are 

two faces of the same activity. This follows straightforwardly from haptic real-

ism since it makes clear that the processes of discovery and application mutu-

ally condition one another and do not have independent lives of their own. 

I will now say a little more about each of these terms.

I am following Potochnik (2017) and Elgin (2017) on the identifica-

tion of understanding, rather than truth, as the primary epistemic aim of 

science. Potochnik’s argument begins with the observation that idealiza-

tions are rampant and unchecked within scientific representations. That is, 

scientists present the world in ways that are known to conflict with their 

empirical findings, and yet they do not in most cases attempt to deidealize 

their models to make them more complicated but more consistent with the 

observed phenomena. To Potochnik, this suggests that truth—in the sense 

of faithfulness to the observed facts—cannot be the primary epistemic aim 

of science. Instead, idealized representations are retained because they aid 
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understanding by virtue of their greater simplicity. This is the indication that 

the aim of understanding trumps that of truth.

The reader may be wondering what the difference is between the terms 

“explanation” and “understanding.” The preceding paragraph could be writ-

ten with “explanation” replacing the word “understanding” without much 

change in meaning. The thing to appreciate is that in the philosophy of sci-

ence, explanation is often treated as something totally objective, not stand-

ing in any relation to human psychology. This was a feature of Hempel’s 

(1965) classic but now unpopular covering law account of explanation, in 

which a scientific theory was said to explain a phenomenon if its laws could 

be used to predict the occurrence of the phenomenon. Carl Craver (2014) has 

defended an ontic sense of explanation in which states of affairs in the world 

are said to be the explanation of a phenomenon, independently of anybody’s 

reference to them. Even though other philosophers, like Bechtel, restrict 

explanation to an epistemic sense (see Illari 2013), the prevalence of the 

Hempelian and ontic notions makes “explanation” an ambiguous term. In 

contrast, understanding is always taken to bear an ineliminable relationship 

to a human investigator. When understanding is recognized as the epistemic 

aim of science, it is clear that this aim does not transcend human standpoints 

and agendas. Science, in its pursuit of knowledge, is not a collective march 

toward truth in an absolute sense (truth pertaining to the thing in itself), or 

even in the empirical sense of consistency with the maximum number of 

observations. Instead, it is a striving toward a knowledge of things that makes 

sense to and for the people who are producing and using it, people who exist 

in groups and societies with collective aims that include the instrumental 

ones of manipulation and control.

Chapter 8 will explore the point that scientific understanding is directed 

toward control rather than the more contemplative purpose of understanding 

nature for its own sake. This again makes sense of the prevalence of “unreal-

istic” simplifications—ones recognized to be oversimplifications—within the 

store of neuroscientific models and theories. A toy model that makes clear a 

manageably small number of dependency relationships will suffice for many 

practical purposes where the excluded details are assumed to be irrelevant to 

the task. This emphasis on the interrelationship between the aims of under-

standing and control will feed into the account of understanding presented 

in chapter 8. It is based on the verum factum of Giambattista Vico, which 

is the idea that what is comprehensible to human beings is what is made 
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by them. The basic idea is that neuroscientific understanding is achieved 

through the building of proxy systems—not only computational models, but 

also concrete neural systems in which complexity has been reduced—that 

are simple enough to be understood, and thereby manipulated.

To conclude, the epistemic concerns of neuroscience are not to arrive at 

some disinterested kind of knowledge of the inner being of its objects. That 

is, the target is not knowledge for its own sake, of the brain as it is in itself, but 

of ways that neural processes may be put to the external ends of the inves-

tigator. These may well be humanitarian aims, like the cure of psychiatric 

disease and prevention of neurodegeneration. At the same time, it is obvious 

that manipulation and control are not unqualified goods. The instrumental 

achievements of neuroscience are as yet fairly modest, but it is clear that in 

other domains of inquiry, the power to alter nature has gone beyond what 

is beneficial for humans and other life forms. The point of my inquiry is to 

show how the drive toward instrumentality and the appetite for knowledge 

work together in neuroscience, as well as how they mutually reinforce each 

other. This must be recognized if there is to be a proper interpretation of what 

neuroscience is telling us about the brain, and hence the mind. The thing to 

be remembered is that through the interactions and iterations of experimen-

tal research, science constitutes its objects with a view to manipulation. The 

object will be presented, by science, as a manipulandum. That goes as much 

for whole humans as for a few of their nerve cells, or an ear of wheat.
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What follows is a smattering of episodes from within the last 100 years of 

work in the neurosciences, chosen to illustrate the way that the demands of 

simplification have shaped both theory and experiment. I draw primarily 

from motor and visual neuroscience in mammals. Similar stories could be 

told about many other domains of research. Visual neuroscience has long 

been the test bed for theories of cortical function, which makes it a rich 

source of examples for my study.

Part II
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Let us observe how the mechanical genius of our time has diffused itself into 

quite other provinces. Not the external and physical alone is now managed by 

machinery, but the internal and spiritual also.

—Thomas Carlyle (1839, 318) 

Most recent analyses of simplifying strategies, such as abstraction and ideal-

ization, examine cases of prima facie successful science and offer accounts of 

how it is that the science works as well as it does, given that its theories and 

models involve such drastic simplifications. In this chapter, my subject is a 

now-obsolete branch of neuro- and behavioral science, which is not, in hind-

sight, considered very successful. This serves to make the point that simplicity 

is not an unqualified epistemic good—it can sometimes be misleading. It will 

also illustrate the claim made in chapter 2, that scientific perspectives often 

take divergent forms because of differences in the goals that drive them. The 

conclusion of that chapter was that neuroscience as we know it today concep-

tualizes its objects of investigation in such ways as to facilitate their manip-

ulation. Here, we will focus our study on a mechanistic perspective within 

historical neuroscience that shows the stark connection between simplifica-

tion and instrumentality, as well as how these together shape the scientist’s 

vision of what is being discovered.

My topic is reflexology, the now-outmoded term for the branch of neuro-

physiology and psychology centered around the simplifying assumption that 

complex patterns of behavior are concatenations of simple reflex responses, 

exemplified by the sensorimotor reflex arc discovered in the 1830s.1 In the 

1.  See Canguilhem (1994) and Clarke and Jacyna (1987) on the early discoveries in 
reflex physiology.

3  The Reflex Theory: Misleading Simplicity  

in Early Neuroscience
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hybrid discipline once known as “physiological psychology” (Smith 1973), 

the concept of “reflex action” referred both to a pattern of nerve activation 

and to an involuntary kind of behavioral response. In his history of the reflex 

theory, the psychologist Franklin Fearing writes: “For those sciences which 

are primarily devoted to the study of the integrated responses of living organ-

isms, the concept of reflex action has played, in the 19th and first twenty-

five years of the 20th century, a dominating role, comparable, perhaps, to 

the influence of the Newtonian hypotheses in physics” (1930, 4, cf. Skinner 

1931/1961, 319).

Unlike Newtonian mechanics, which is now deemed usable and valuable, 

even if strictly speaking false, reflex mechanics is no longer employed by 

behavioral scientists and neuroscientists. It is not featured in textbooks and 

has not been part of the training in theoretical neuroscience for decades. This 

retrospective lack of success makes reflexology worth considering as a case of 

simplification-gone-wrong. We can ask whether the in-aptness of the sim-

plifying assumptions contributed to the failure of this program. In addition, 

while the reflex theory was the mainstream framework in the period that we 

are considering, the first three decades of the twentieth century, it did have 

its critics. It is valuable to consider the skeptical voices—the reasons given for 

rejecting the simplifications presumed by proponents of reflex theory.

Rather than involving deliberate omission of detail (abstraction), or intro-

duction of falsehood (idealization), within a mathematical model, reflex 

theory employed the simplifying strategy of decomposition of, alternately, 

the nervous system or the behavior of an animal, into putative elementary 

parts—the reflex arc or the reflex response. These reflexes were metaphorical 

elements or atoms—parts whose properties were posited to stay the same 

regardless of varying conditions around them or observable changes in the 

animal’s pattern of movements. This simplifying strategy offers a kind of 

reductive explanation, as argued by Bechtel and Richardson (2010, xxxvii). 

One of the proponents of the reflex theory, Jacques Loeb, stated the funda-

mental intuition quite succinctly: “It is better for the progress of science to 

derive the more complex phenomena from simpler components than to do 

the contrary” (1912, 58); and “The progress of natural science depends upon 

the discovery of rationalistic elements or simple natural laws” (1912, 59).

An important question, raised by the work of Loeb and others, is whether 

the belief in the fundamental simplicity of nature that these statements 

seem to express has anything more than a pragmatic status. By the end of 
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this chapter, we will see that the tenets of the reflex theory were justifiable 

only on instrumentalist grounds. But it turns out that the framework was 

not as serviceable for manipulation of behavior as had been hoped. Needless 

to say, the engineering of a scientific framework to facilitate prediction and 

control does not guarantee that technological targets will be met.

3.1  Atoms of the Nervous System and Elements of Behavior

In my exposition of the reflex theory, I will focus initially on two influential 

scientists, active in the early decades of the twentieth century—Jacques Loeb 

and Ivan Pavlov.2 Loeb’s research in this area was primarily in the physiology 

of invertebrates, whereas Pavlov is still renowned for his experiments on learn-

ing in dogs. Both envisaged that the concept of the reflex could be the basis 

of an integrated and complete explanation of the brain, nervous system, and 

behavior. Another shared characteristic of their outlook was that they sought 

to model biology and psychology on the physical sciences which, in particu

lar, meant applying the analytical methods of mechanics to the animal. That 

is, they aimed for a decomposition of the nervous system and movements of 

animals into the components (i.e., reflexes), whose occurrence could, when 

taken together, account for the activity of the whole nervous system or whole 

animal.3 The science of Loeb and Pavlov was self-consciously, and literally, 

mechanistic.

The very first words of the introduction to Loeb’s Comparative Physiology 

of the Brain are as follows: “The understanding of complicated phenom-

ena depends upon an analysis by which they are resolved into their simple 

2.  See Pauly (1987) for an account of Loeb’s career and methodology and Todes 
(2014) on Pavlov; also Smith (1992) on Pavlov and his predecessors. For ease of expo-
sition, I have smoothed over much of the variety of opinion within reflexology. To 
get a better sense of the range of views within this program, see Fearing’s (1930) 
discussion of many now-forgotten figures. Note also that in my account, Pavlov’s 
classification of unconditioned and conditioned reflexes is treated as equivalent to the 
distinction between simple and complex reflexes by Sherrington and others. Both ter-
minologies capture the notion of elementary versus nonfundamental reflexes but 
this papers over the differences between these sets of concepts and the roles they play 
in their respective theories.
3.  See Falkenburg (2019, 76–79) on these methods of decomposition and explana-
tory reconstitution (aka “analysis and synthesis”) and their relation to mechanistic 
science.
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elementary components. If we ask what the elementary components are in 

the physiology of the central nervous system, our attention is directed to a 

class of processes which are called reflexes” (Loeb 1900, 1).

Loeb goes on to give two examples of reflexes—the eyelid closing on 

the advance of a foreign body and the narrowing of the pupil in response 

to light. He then defines the reflex by describing what is common to these 

examples: “In each of these cases, changes in the sensory nerve-endings 

are produced which bring about a change of condition in the nerves. This 

change travels to the central nervous system, passes from there to the motor 

nerves, and terminates in the muscle-fibres, producing there a contraction. 

This passage from the stimulated part to the central nervous system, and 

back again to the peripheral muscles, is called a reflex” (Loeb 1900, 1–2).

And he adds that “there has been a growing tendency in physiology 

to make reflexes the basis of the analysis of the functions of the central 

nervous system” (Loeb 1900, 2).

In the first lecture of Pavlov’s Conditioned Reflexes, we find a comparable 

definition: “An external or internal stimulus falls on some one or other 

nervous receptor and gives rise to a nervous impulse; this nervous impulse 

is transmitted along nerve fibres to the central nervous system, and here, 

on account of existing nervous connections, it gives rise to a fresh impulse 

which passes along outgoing nerve fibres to the active organ, where it 

excites a special activity of the cellular structures” (1927/1960, 7).

In addition, Pavlov emphasizes the “necessity” of the connection between 

stimulus and response, a characteristic that ensures that the reflex is a “genu-

ine scientific conception” (1927/1960, 7). Like Loeb, Pavlov describes reflexes 

as having an elementary status—he refers to them as “the elemental units in 

the mechanism of perpetual equilibration”—the mechanism through which 

an animal adapts its behavior to its surroundings (1927/1960, 8). A distinc-

tive feature of Pavlov’s theory is the division between unconditioned and con-

ditioned reflexes.4 Ones of the former type are those that exist from the birth 

of an animal and persist after the removal of the cerebral cortex,5 and the 

4.  Todes (2014, 1) points out that this is a mistranslation of Russian terms, better con-
veyed as “unconditional” and “conditional.” However, I keep to the standard transla-
tion as the difference in meaning is not pertinent to my discussion.
5.  Pavlov describes the unconditioned sort as the “numerous machine-like, inevitable 
reactions of the organism—reflexes existing from the very birth of the animal, and due 
therefore to the inherent organization of the nervous system.” (1927/1960, 8)
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second kind are the central topic of Pavlov’s research. Conditioned reflexes 

are said to be learned through the creation of an association between an arbi-

trary stimulus (e.g., the ticking of a metronome at a particular frequency) and 

a stimulus that innately causes a reflexive response—such as food, the stimu-

lus for the unconditioned reflex of salivation. The cerebral cortex is said to 

be the neural substrate of conditioned reflexes since these responses do not 

persist after surgical removal of this structure. Pavlov posited no additional, 

“higher” mental structures that exert control over reflexive behavior—all 

actions are said to be determined by these two kinds of reflexes.

This radical conclusion did find adherents, such as Hull and Baernstein 

(1929, 14), who write, “It is believed by increasing numbers of students of 

human and other mammalian behaviour that the conditioned reflex, with 

its power of substituting one stimulus for another, is the basic mechanism 

not only of ordinary habits but of the entire mental life.”

The proposal of these authors is that the conditioned reflex should be rep-

licable in human-made device. Their idea was to build a reflex machine and 

assess its capacities for learning and intelligence as a test of this generalized 

theory of the mind. Still, the thesis that the reflex is the basis of “mental life” 

in its entirety was never endorsed by the British physiologist Charles Sher-

rington, who himself was a major contributor to the field. Sherrington’s own 

way of characterizing the elementary status of the reflex was very influen-

tial: “The reflex-arc is the unit mechanism of the nervous system when that 

system is regarded in its integrative function. The unit reaction in nervous 

integration is the reflex, because every reflex is an integrative reaction and no 

nervous action short of a reflex is a complete act of integration.” (1906a, 7).6

His view was that these fundamental units of activity, the reflexes, were 

compounded together during the evolution and development of the nervous 

system to generate the basis for more complex behavior. The motions of 

running, walking, and leaping are the outcome of reflexes concatenated 

together.7

I have highlighted how proponents of the reflex theory took reflexes to 

have an elementary status. Relatedly, Kurt Goldstein, a major critic of reflex-

ology (see section 3.2), refers to its methodology as “atomistic.” To under-

stand the claim that the reflex approach is atomistic, we must take the 

6.  See Casper (2014) for a useful overview of Sherrington’s career and the notion of 
“integration.”
7.  See Graham Brown (1914, 19–20) for discussion.
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original meaning of “atom,” where “atoms” are the ultimate simples—being 

indivisible and unchanging, they are the basic constituents of more complex 

wholes. Just as there can be metaphorical atoms, outside of physics, we have 

metaphorical elements outside of chemistry by extending the idea that there 

are fundamental, simple kinds of substances out of which more complex 

compounds are made. To treat simple reflexes as the atoms or elements of 

nervous system and behavior is to assert that these processes, or patterns 

of response, are stable (at least after they have been established, in the case 

of conditioned reflexes) and that they underlie the apparent complexity of 

behavior that is manifestly varying. The atomistic methodology is therefore 

a simplifying strategy—it is an attempt to explain complex appearances in 

terms of simpler fundamental components.

Fearing writes of reflexologists such as Pavlov that “it is characteristic of 

this point of view that the ‘simple’ reflex is described as it appears in the 

lower animals or in the spinal animal,8 and there is a tacit assumption that 

these characters are the same for the more complicated types of nervous 

action, e.g., those involving the cerebrum” (1930, 296).

The idea is, first, that the scientist can discover these atoms of the nervous 

system, or elements of behavior, by examining experimental subjects such 

as invertebrates (“lower animals”) or brainless vertebrates, incapable of any 

complexity of action; it is presumed that those actions reveal the fundamental 

components of behavior in all their raw simplicity. For instance, it is assumed 

that invertebrates, lacking a cerebral cortex, will only demonstrate responses 

attributable to unconditioned reflexes. Likewise, vertebrates like dogs and 

cats that have been experimentally prepared by decapitation or removal of 

the cortex will manifest only those simple reflexes. Second, the assumption 

is that in animals who can and do demonstrate more complex behavior (e.g., 

dogs and cats with their brains unharmed), the simple reflexes are still there, 

with the same physiological characteristics as in the “prepared” dog or cat, but 

somewhat masked by the overlay of complex, conditioned reflexes, as well 

as top-down inhibition of simple reflexes from the brain (Fearing 1930, 296). 

While Pavlov emphasizes the necessity of stimulus-response cause-and-effect 

connections, which for him make the reflex a properly scientific concept, 

he does not propose that these connections will always be observable. Even 

8.  That is, one whose entire brain has been removed (Sherrington 1909).
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conditioned reflexes, he reports, are subject to countless influences, “disturb-

ing factors,” which interfere with their manifestation (Pavlov 1927/1960, 

20). For this reason, he conducted his experiments on the conditioned reflex 

in dogs in a special isolation chamber in which the animal had no contact 

with its fellows, or even with the experimenter.9 Pavlov’s reliance on such 

scenarios is significant. As we now turn to criticisms of the reflex theory, we 

will see that much of the skepticism has focused on the assumption of the 

existence—outside controlled laboratory conditions—of any of these simple and 

elementary reflex responses.

3.2  The Criticisms of Reflexology

The supremacy of the reflex theory did not go uncontested. In this section, 

I summarize a number of the objections that were leveled at the ontologi-

cal and methodological assumptions of reflexology, including the interven-

tions of two philosophers, John Dewey and Maurice Merleau-Ponty. My 

summary is not exhaustive. For example, I do not include the criticisms 

offered by the physiologist Thomas Graham Brown, precisely because he 

does not take issue with the simplifying assumption of decomposition into 

fundamental units, but instead proposes an alternative kind of element, the 

“half centre” (e.g., Graham Brown 1914).

Six strands of criticism can be determined. I will discuss each in turn:

1.	 Empirical findings of the lack of stability of simple reflexes and condi-

tioned reflexes

2.	 The ad-hocness of the postulates added to the reflex theory to achieve 

consistency with those empirical findings

9.  It is worth reading Pavlov’s own justification for the selection of such unnatural 
conditions for his experiments on conditioning:

It was evident that the experimental conditions had to be simplified, and that this simplifi-
cation must consist in eliminating as far as possible any stimuli outside our control which 
might fall upon the animal, admitting only such stimuli as could be entirely controlled by the 
experimenter. . . . . The environment of the animal, even when shut up by itself in a room, is 
perpetually changing. Footfalls of a passer-by, chance conversations in neighbouring rooms, 
slamming of a door or vibration from a passing van, street-cries, even shadows cast through the 
windows into the room, any of these casual uncontrolled stimuli falling upon the receptors of 
the dog set up a disturbance to the cerebral hemispheres and vitiate the experiments. To get 
over all these disturbing factors a special laboratory was built at the Institute of Experimental 
Medicine in Petrograd . . . (Pavlov 1927/1960, 20).
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3.	 Questioning of the reductionist methodology, which seeks explanation 

of behavioral wholes in terms of simple parts

4.	 Dubiousness of the extrapolation from the neurophysiology of the 

periphery and spine, assumed by the reflex theory, to anatomically 

unknown structures within the brain

5.	 The lack of ecological validity of physiological experiments performed 

on surgically altered animals, as well as of behavioral experiments per-

formed in highly artificial laboratory conditions

6.	 Dubiousness of the notion of the simple reflex, even when construed as 

an abstraction

The purpose of this section is to give a presentation of these criticisms 

without evaluation or endorsement. Assessment of the cogency of the criti-

cism will be deferred to section 3.3.

One sustained case against the reflex theory was put forward by the 

German neurologist Kurt Goldstein in his book The Organism (Goldstein 

1934/1939; see also Goldstein 1940, chapter 5). His first point of attack is 

that experimental reports of the putative simple reflexes do not show the sta-

bility, the constancy of response, that is postulated by the theory (Goldstein 

1934/1939, 69ff.). Summarizing the results of various researchers, including 

some proponents of the reflex theory, it appears that the simple responses, 

like the patellar reflex, are altered by bodily posture and attentional state. As 

reported by Sherrington (1906b, 49), the receptive field of the scratch reflex 

in dogs—the area on the skin in which a stimulus can elicit the scratch-

ing movement of the leg—varies in threshold sensitivity from day to day. 

Regarding the conditioned reflex of Pavlov, Merleau-Ponty (1942/1967, 58), 

following Buytendijk and Plessner (1936), argues that it is too unstable to 

do the theoretical work required of it. A striking case of instability comes 

from Pavlov’s reports of the behavior of two dogs that had been subjected 

to repeated conditioning experiments. They appear to fall into a hypnotic 

stupor and fail to give the expected reactions to either the conditioned or 

unconditioned stimuli.

This brings us to the next allegation, that the reflex theory is full of ad 

hoc modifications–the unprincipled use of terms such as “excitation, inhibi-

tion and disinhibition”—brought in to mask the disagreement between the-

ory and observation (Merleau-Ponty 1942/1967, 58ff.; 19–20; cf. Buytendijk 

and Plessner 1936). In particular, when the usual stimulus fails to elicit the 
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expected reflex, it is posited that a process of inhibition has been activated, 

preventing the response; but independent evidence for the inhibitory mech-

anism is not established. Goldstein contends that with the proliferation of 

hypotheses accounting for the modifications of normal, simple reflexes, the 

theory loses its justification for drawing a distinction between the normal 

reflex and variants of it.10 This lack of justification goes unnoticed because 

researchers automatically classify the responses produced in certain kinds of 

artificial experiments as the normal ones (Goldstein 1934/1939, 80–81).

Given this, Goldstein is skeptical of the classification made of the “nor-

mal” reflex versus its variants, and of the simple reflex versus the complex 

patterns of behavior that they are said to comprise. Put together with the 

abovementioned observation of lack of stability of the supposed elemen-

tary responses, Goldstein calls into question the reductionist methodology 

that attempts to explain a complex behavioral whole in terms of simpler 

parts. The following passage is worth quoting at length:

The customary method attempts to reduce variable to constant reactions, seeing, 

in the latter, the basic ones, and regarding the former as modifications. This ten-

dency is understandable as a very natural desire to deal with constant factors. The 

supposedly greater simplicity of constant reactions lends itself as a starting point 

for a theory, in that the variable responses can then be understood as complexes 

derived from the more simple and constant ones. However, there is no question 

but that the so-called variable processes are, in reality, no less constant, if one takes 

into consideration all their causal conditions. Concerning the question of simplic-

ity and complexity, and whether the complex can be deduced from the simple, we 

shall see, in our later discussion, that the converse view is probably nearer the truth. 

(Goldstein 1934/1939, 80)

What this suggests is that Loeb’s assertion, that it is good scientific method 

to derive more complex phenomena from simpler ones, has met an obstacle: 

Goldstein argues that in the science of the nervous system and behavior, no 

foundation can be found in a substrate of components or processes, both 

simple and stable.

Along with the attempt to derive the complex from the simple, the reflex 

theory proposes to infer facts about brain processes from observations of 

10.  Goldstein lists these hypothetical factors: “inhibition, facilitation, neural switching 
or shunting of different kinds, influence through peripheral factors, such as the state 
of tension of the muscles, position, enforcement or diminution through other reflexes, 
‘central’ factors, and amongst these, particularly, psychic factors” (1934/1939, 80).
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the more accessible processes in the spine and peripheral nervous system. 

This extrapolation is challenged by Theodore Hough in an address to the 

American Association of the Advancement of Science:

we miss entirely the satisfaction of seeing the cerebral functions clearly pictured in 

terms of neurone structure. We trace the “way in” and the “way out”; we see that 

the connection between the afferent and efferent nerve fibers is in the cortex; but 

what takes place in the cortex? Is it objectively nothing more than our typical reflex 

raised to the nth power of complexity? Perhaps it is; but does any one feel reason-

ably sure of it? For one, I confess I do not. (1915, 408, quoted in Fearing 1930, 287)

It is significant here that the modeling of cortical neurophysiology, as 

merely a more complicated kind of reflex, is reported as if it has been taken as 

a matter of faith. At this time, the neuroanatomy and physiology of the brain 

were uncharted in comparison with that of the nervous system below the 

neck. Given their ignorance, reflexologists made the parsimonious assump-

tion that there was nothing radically different going on in the brain. But 

research later in the twentieth century showed that in this case, parsimony 

was misleading.

A core challenge to reflexology turns on its deficiency in what we would 

now call ecological validity—the lack of applicability of experimentally gener-

ated phenomena to the explanation of the intact nervous system or uncon-

strained animal behavior.11 Critics of reflexology go so far as taking the 

central phenomena of the research program to be experimental artifacts. 

Having rejected the notion that reflexes are the elementary components of 

nervous system and behavior, Goldstein concludes that they are no more 

than an “expression of experimentally produced injury” (1934/1939, 157), 

especially because of the manifest difference between reflex reactions of the 

legs and the normal flow of movements of an animal walking over its usual 

ground (1934/1939, 169–170). The failure to notice the lack of similarity 

between ordinary movements and reflexive ones stems, Goldstein argues, 

from the fact that in their research, many physiologists never deal with 

intact animals (1934/1939, 90).12

11.  Note that a version of ecological validity was a core “methodological postulate” 
for Goldstein: “no phenomenon should be considered without reference to the 
organism concerned, and to the situation in which it appears” (1934/1939, 25).
12.  Canguilhem (1965/2008b, 113) gives an interesting commentary on Goldstein’s 
view on experimental conditions: “The situation of a living being commanded from 
the outside by the milieu is what Goldstein considers the archetype of a catastrophic 
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Although Pavlov performed his conditioning experiments on animals 

whose nervous systems were unharmed, he still faced the criticism that 

the artificiality of his experimental setup—such as the confinement and 

isolation of the dogs—placed limitations on what could be inferred from 

his results about learning and behavior in general. Goldstein (1934/1939, 

175) argues that the precise, repeated paring of unconditioned and con-

ditioned stimuli does not occur in the lives of animals away from human 

control. Thus, they do not help to explain animals’ learning in the wild, 

but they do shed light on the processes in play during human training of 

animals (Goldstein 1934/1939, 178). A comparable point about difficul-

ties arising with use of artificial stimuli had been made by Herbert Spencer 

Jennings, a zoologist and former student of Dewey, in response to Loeb’s 

attempt to make galvanotropisms (reflex responses to electric currents) fun-

damental to the explanation of movement (see Loeb 1900, chapter XI). 

Not only did the movements elicited in those experiments appear highly 

unnatural, but the electrical stimulus was one that simply did not occur 

in the environment of the organism—how could it then form an explana-

tory basis for the account of ordinary locomotion? (Jennings 1906, chap-

ter XIV; and see Pauly 1987, chapter 6). Dwelling on Pavlov’s report of 

the two dogs for whom repeated conditioning experiments led to their 

entering a hypnotic stupor, Buytendijk and Plessner (1936) conclude that 

his research on conditioning can only be informative about the genesis 

of neurosis!

We now move to the final point, on the lack of utility of the reflex con-

cept, even as an abstraction. Dewey (1896) was one early critic of reflex 

psychology. He argues that the assumption foundational to the theory, of a 

clear distinction between stimulus and response, sensory and motor opera-

tions, is an artificial, misleading abstraction that masks the concrete fact of 

the interdependence of sensation and movement. In The Integrative Action 

of the Nervous System, Sherrington does indeed admit that the notion of 

situation. And that is the situation of the living in a laboratory. The relations between 
the living and the milieu as they are studied experimentally, objectively, are, among 
all possible relations, those that make the least sense biologically; they are pathologi-
cal relations.”

Elsewhere in this essay, the changing fortunes of reflexology are discussed (Can-
guilheim 1965/2008b, 107–111).
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the simple reflex is an abstraction, but makes the claim that it is at least a 

“convenient fiction”:

A simple reflex is probably a purely abstract conception, because all parts of the 

nervous system are connected together and no part of it is probably ever capable 

of reaction without affecting and being affected by various other parts, and it is a 

system certainly never absolutely at rest. But the simple reflex is a convenient, if not 

a probable, fiction. Reflexes are of various degrees of complexity, and it is helpful 

in analyzing complex reflexes to separate from them reflex components which we 

may consider apart and therefore treat as though they were simple reflexes. (Sher-

rington 1906a, 8; cf. 114)

This is one way to deal with the objection that stable and constant 

reflexes are never actually observed (point 1). Given their ubiquity in other 

branches of science, one may rightly ask what is wrong with “abstractions” 

or “fictions,” so long as they are recognized as such.

Goldstein rejects even the “fictional” concept of the simple reflex because 

(for reasons just discussed) he does not think that it delivers the requisite 

understanding of the intact organism.13 Merleau-Ponty delivers an involved 

response to Sherrington’s deployment of the notion of abstraction. He 

counters Sherrington’s claim that the reflex is an abstraction by asserting that 

it is actually a concrete occurrence, albeit one that is contrived experimentally 

and lacking more widespread significance: “But neither is the reflex an abstrac-

tion, and in this respect Sherrington is mistaken: the reflex exists; it represents 

a very special case of behavior, observable under certain determined condi-

tions. But it is not the principal object of physiology; it is not by means of it that 

the remainder can be understood” (Merleau-Ponty 1942/1967, 46).

Merleau-Ponty criticizes Sherrington for his deployment of the abstract 

idea of the reflex to preserve an ontology of animal machines in the face 

of countervailing evidence (Moinat 2012, 95–97). Yet these appeals to the 

reflex are not adequate to account for Sherrington’s key discoveries of 

“integration”—the coordination of movement required for adaptive behav

ior. As Merleau Ponty puts it, “It is paradoxical to conserve the notion of 

the reflex arc theoretically without being able to apply it anywhere in fact. 

As in all the particular questions which we have mentioned, in his general 

conception of nerve functioning Sherrington seeks to save the principles of 

13.  Elsewhere, I give a more detailed discussion of Goldstein’s views on abstraction 
(Chirimuuta 2020a, 2020d).
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classical physiology. His categories are not made for the phenomena which 

he himself has brought to light” (1942/1967, 33).

And here, we are brought back, in a roundabout way, to the beginning 

of our list of criticisms: the failure of the reflex theory to properly meet 

empirical facts.

It is not obvious what actual impact these criticisms had, and this is not a 

matter that I wish to settle in this chapter. For instance, we should not imag-

ine that Sherrington’s defense of abstraction is a response to Dewey’s charges. 

Eventually, the reflex theory was eclipsed when computation came to pro-

vide an alternative simplifying framework for neuroscience and cognitive 

science in the mid-twentieth century. Chapter 4 discusses the rise of com-

putationalism, arguing that its appeal rested not least in the simplifications 

that it offered to neurophysiologists. In terms of its core tenet—that nervous 

system and behavior can be explained via decomposition into elementary 

reflexes—reflexology is a theory without retrospective success,14 although at 

the end of this chapter, I will discuss the afterlife of the reflex theory. Now 

it is necessary to do some evaluation of these criticisms. We will find that 

some of them miss their mark because of a more fundamental disagreement, 

between critics and proponents of the reflex theory, concerning the aims of 

research. This provides a telling illustration of the way that experimental 

methodologies, simplifications, epistemological standards, and instrumental 

goals, are woven together to constitute scientific perspectives.

3.3  Arbitration

3.3.1  Realist and Instrumentalist Stances toward the Reflex Theory

One way to summarize Goldstein’s complaint against reflexology is that it 

is reductionism gone rogue, misled by the attraction of parsimonious expla-

nations. The reflexologist employs a reductionist methodology—opting to 

study parts (simple reflexes) in isolation, with the aim of seeing how their 

operation together will yield an explanation of the whole nervous system.15 

14.  See for instance, Todes (2014, 300–302) on the failed ambitions of Pavlov’s 
project.
15.  This formulation of reductionism is very much in line with the one presented by 
Bechtel and Richardson (2010): reduction as decomposition of the living system into 
component mechanisms.
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Furthermore, the reflexologist tends to assume a reductionist ontology, sup-

posing that reflexes are elementary components, which when aggregated 

together comprise the whole nervous system; he takes it that the organism 

is “a bundle of isolable mechanisms which are constant in structure, and 

which respond, in a constant way, to events in the environment (stimuli)” 

(Goldstein 1934/1939, 67). That is, the possibility of context dependency 

for these responses—of parts behaving differently when situated in their 

wholes—is not considered by the reflexologist. Much of the content of Gold-

stein’s magnum opus, The Organism, is a statement of the importance of con-

text dependency in biology.

According to Todes (2014), the picture of the organism as a mere aggre-

gate of physicochemical mechanisms, the reflex being the relevant one for 

the nervous system, was indeed foundational for Pavlov. He was a reduction-

ist in both the methodological and ontological senses. The failure, described 

in section  3.1, of detailed experimental work to provide support for the 

existence of stable, elementary reflexes therefore stands as a challenge to 

Pavlov’s theory. However, not all practitioners of reflexology took up this 

realist ontological stance. In the US, a distinctly instrumentalist version of 

reflexology was propounded by behaviorist psychologists. B. F. Skinner is 

an important case in point. Under the influence of ideas from Mach and 

Bridgman,16 he asserted an operationalist philosophy of science in which 

it was unnecessary and misguided to entertain the question of whether a 

simple reflex really exists, and whether any experiment has been adequate 

to reveal it:

Is a reflex a unitary mechanism? Is behavior a sum of such mechanisms? Then, if 

by reflex we mean a hypothetical entity which exists apart from our observations 

but which our observations are assumed to approach, the questions are academic 

and need not detain us; if, on the other hand, we define a reflex as a given observed 

correlation or as a statistical treatment of observed correlations, the questions are 

meaningless, for they ignore the process of analysis implied in the definition. A 

reflex, that is to say, has no scientific meaning apart from its definition in terms of 

such experimental operations as we have examined, and, so defined, it cannot be 

the subject of questions of this sort. (Skinner 1931/1961, 341)17

16.  See Moore (2005) on Skinner’s philosophical influences. The connections 
between Mach, Loeb, and Skinner’s teacher, Crozier, are especially interesting.
17.  Also, “the notion of a reflex is to be emptied of any connotation of the active 
‘push’ of the stimulus” (Skinner 1938, 21).
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Thus, it becomes clear that the first line of criticism, that simple, stable 

reflexes do not exist and a fortori, the nervous system and behavior are not 

compounded from them, can only be leveled at the ontologically com-

mitted version of the reflex theory, but not the operationalist version put 

forward by Skinner. This is exactly what Skinner (1940, 463) points out in 

a review of Goldstein’s The Organism: “The possibility is not entertained [by 

Goldstein] that, short of believing in reflexes as ‘things,’ one may still hold 

to the predictive value of correlating responses with stimuli and with other 

variables. The probably meaningless and certainly unimportant question of 

the existence of reflexes bears the brunt of the attack.”

With this stance there comes a shift away from the justification of the 

reflex theory in terms of simplicity in nature and toward an emphasis on 

simplification—the production of simple phenomena and cause-and-effect 

relationships that are not claimed to be part of the fabric of nature (because 

such claims would veer from positive, factual science into metaphysical spec-

ulation) but nonetheless serve some practical purposes. This position is con-

sistent with the ideas of Mach and Bridgman. According to Mach, the “task 

of science is to provide the fully developed human individual with as perfect 

a means of orienting himself as possible” (1886/1914, 37; quoted in Smith 

1995, 42). That is, the aim of science is not to supply disinterested knowl-

edge of nature, but to furnish the agent with tools for effective practice. As 

such, Mach’s doctrine of science as “economy of thought”—where science is 

to provide “the concisest and simplest possible knowledge of a given prov-

ince of natural phenomena” (1883/1919, 6–7)—cannot be taken as the claim 

that science must reveal order and simplicity in nature, but that simplic-

ity is strived for because of its utility.18 Similarly, Bridgman (1927, 51–52; cf. 

204ff.) remarks that any scientist’s conviction in the fundamental simplicity 

of nature—owing, for example, to a belief of there being only a small number 

of elements—has no more than a pragmatic status. Bridgman also observes 

that methodological reductionism has practical appeal because of its ease of 

application, but then it “will appear to be of disproportionate importance” 

(1927, 221–222).

To tie together these threads, we see that the charges against reflexology 

regarding the reliance on methodological reductionism, lack of ecological 

18.  See Smith (1995, 45), which argues that Skinner follows Mach in this science-as-
economy view.
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validity, and even the nonexistence of the simple reflex are not devastating 

against an operationalist and instrumentalist construal of the reflex theory. 

If simplifications are justified for the part played in a quasi-engineering 

project, the production of specific responses and behaviors, then these crit-

icisms are not pertinent. The reflexologist-as-technologist no longer sees 

himself as a disinterested researcher seeking the truths of nature, but more 

as an investigator whose goal is to take command of natural processes.

Not coincidentally, the behaviorists in the US were enthusiastic about 

the second of these two job descriptions. At the head of John Watson’s 

behaviorist manifesto, it is declared that psychology’s “theoretical goal is 

the prediction and control of behavior” (1913, 158).19 As Pauly (1987, 174) 

reports, Loeb’s model of biology as a discipline aiming at control of nature 

was a direct influence on his student, Watson:

Watson’s central innovation was to place the control of behavior at the founda-

tion of psychology as a science. By arguing that control was knowledge, he broke 

down the barriers between the aims of pure psychology and those of behavioural 

technology. In this sense behaviourism was a model Loebian science, organized 

around the desire “to get life phenomena under our control.” In both its positiv-

istic methodology and its radical social claims it was the direct descendant of the 

ideas developed by Loeb in the early 1890s. For Watson himself, the engineering 

standpoint represented independence and excitement—from the level of labora-

tory innovation to that of power for social change. He saw himself in opposition 

to the received wisdom of his field; like Loeb he would cut through complexity 

with continuous experimental activity.

Watson’s uptake of the idea of the simple reflex as a means to analyze 

behavior was directly influenced by Loeb (Pauly, 1987, 175). The key idea is 

that complexity is reduced (“cut through”) and simplicity is generated—not 

discovered—through experimental activity. Another important point is that 

the “natural” state of things—how organisms are independently of experi-

mental manipulations—is not privileged in the Loebian view.20 Against this 

19.  And indeed, Titchener’s (1914, 14) response to Watson’s attack on the structural-
ist (introspectionist) psychology was to say that behaviorism is technology, whereas 
structuralist psychology is an actual science.
20.  Pauly (1987, 199) summarizes that “the original organization and normal pro
cesses of organisms no longer seemed scientifically privileged; nature was merely one 
state among an indefinite number of possibilities, and a state that could be scientifi-
cally boring.”
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stance, the criticisms of reflexology that are centered on the artificiality of 

the experimental preparations do not have force. They merely avert to a big-

ger dispute between the proponents and critics of reflexology—a disagree-

ment about what biological science fundamentally is and how it should be 

conducted.

3.3.2  Divergent Perspectives

We have just seen that some of the tenets of reflexology that appeared to its 

critics as simplistic and misguided can be more charitably regarded as simpli-

fications subject to justification, not by their closeness to nature but by their 

utility within certain practical projects. This is not the attitude taken by all 

reflexologists toward their posits—Pavlov has already been mentioned as an 

exception here—but it is attributable to Loeb and the behaviorists influenced 

by him. However, there are some problems with this analysis, insofar as it 

depicts the most defensible version of the reflex theory as a pure instrumen-

talism and operationalism and casts its detractors as scientific realists able 

to interpret and evaluate theories only in terms of how close they are to the 

truth about nature.21

While it is true that behaviorist psychology developed in a context in 

which the fruitful application of science was highly prized,22 the case for their 

subscribing to total instrumentalism is overstated. One complication is that 

Skinner himself does at times talk like a realist regarding simplicity (“order”) 

in nature: “I never face a Problem which was more than the eternal problem 

of finding order. . . . ​Of course, I was working on a basic Assumption—that 

there was order in behavior if I could only discover it” (Skinner 1961, 112; 

quoted in Moore 2005, 100).

One might attribute this inconsistency to the fact that this was written 

long after Skinner’s reflexology research of the 1930s. Still, it fits with the 

point that Skinner was throughout his career a follower of Francis Bacon’s 

philosophy of science (Smith 1996, 65). The Baconian scientist is not a thor-

oughgoing antirealist since this vision of science and technology is guided 

by the maxim that nature, in order to be commanded, must be obeyed. 

The investigator, therefore, sees himself as striving to reveal the underlying 

properties and causal structures within natural systems in order that they 

21.  I have published this analysis elsewhere (Chirimuuta 2021).
22.  As discussed by Boring (1950, 551), Mills (1998, 4), and Edwards (2016, 179).

Downloaded from http://direct.mit.edu/books/book-pdf/2345162/book_9780262378628.pdf by guest on 25 March 2024



82	 Chapter 3

may be bent to human purposes. Although in the first half of the twentieth 

century, various scientists did on occasions espouse stringent instrumental-

ism and operationalism, the practice rarely conformed to the purity of the 

preaching. Doing science involves dealing with and thinking about things, 

which in turn requires that these objects of investigation be conceptual-

ized in some way beyond the operational definitions and equations linking 

observations. As Stein (1989) has observed, many scientists seem to alter-

nate between realist and instrumentalist interpretations of their theories, 

depending on the stage of research. As much as Skinner might have thought 

the reflex theory free of any ontological commitment, it at least came with a 

prior conception of what an animal fundamentally is: a machine-like system 

whose behavior can in principle be determined through precise control of 

external stimuli.

This is a fundamental difference in perspective between proponents and 

critics of the reflex theory. For the purposes of drawing the contrast, I will 

focus here on Goldstein. As mentioned in section 3.2, Goldstein was willing 

to grant that research on the conditioned reflex afforded insights into human 

interventions on behavior. On his own conception of biology, however, 

the goal is to understand the “intrinsic natures” of organisms (1934/1939, 

3–9), as they are independently of experimental influence. For example, in 

his book Human Nature, Goldstein draws a distinction between processes 

of training and drilling and asserts that the establishment of conditioned 

reflexes, being only a drill, is tangential to the proper task of neurobiology:

Training attempts to achieve . . . ​[performances] by exercising the natural capaci-

ties of the individual organism and by bringing them to the level of greatest effi-

ciency. The performances in question are related to the nature of the organism, 

and the intended effect is the highest possible adequate relationship between the 

individual organism and the environment. In drill the performance aimed at is 

not related to the nature of the organism. (1940, 135–136)

Talk of “natures of organisms” sounds quite metaphysical, and indeed this 

is the first objection raised in Skinner’s (1940) critical comments on The Organ-

ism. Goldstein even uses the terms “potentiality” and “actualization,” reminis-

cent of Aristotle’s metaphysics of living beings.23 But we should not, because 

23.  For instance, “The organism has definite potentialities, and because it has them 
it has the need to actualize or realize them. The fulfilment of these needs represents 
the self-actualization of the organism. Driven by such needs, we experience ourselves 
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of this, be misled into taking Goldstein’s framework as a purely contemplative 

natural philosophy with no eye to application. Goldstein’s practice as a neu-

rologist did include the goal of therapeutic intervention on brain-damaged 

patients. It was different from the Loebian instrumentalism because Goldstein 

did not think that therapeutic success could be achieved through piecemeal, 

reductionist methods as opposed to consideration of the patient’s personality, 

deficits, and capabilities in their entirety. Moreover, Goldstein took recovery 

to depend on the capacity of the patient to achieve self-actualization, to fulfill 

his or her nature, with the interventions of the physician being intended to 

aid this process.24 As such, health and illness are defined in terms of whether 

the condition permits or impedes the self-actualization of the patient, not in 

purely objective, physiological terms (Goldstein 1959).

Instead of imposing the dichotomies of realist and instrumentalist, or pure 

versus applied science, to the perspectives represented by Goldstein and Skin-

ner, it is better to draw the contrast in terms of their different stances toward 

agency,25 both of the scientist and the organism under investigation. In the 

reflex theory, and especially in Skinner’s behaviorist development of it, we 

are expected to be satisfied by knowing only, from the outside, the relation-

ships between causes and effects, stimuli and responses, that go in and out 

of the black box that is an animal’s nervous system. To the extent that inner 

tendencies, drives, and predispositions of the animal are to be noted, these 

are but the material for more exhaustive research into the observable effects 

of external causes, or the springboard for new forms of control, as in operant 

conditioning. This picture elides the agency of the creature under investiga-

tion, treating the person or animal as passively molded by its environment 

and subject to the agency of the investigator.

In contrast, for Goldstein, the inner tendencies of the organism, as well 

as behaviors generated aside from causal interventions of the investigator 

(all the behaviorist’s stimuli and reinforcements), are a central matter for 

as active personalities and are not passively impelled by drives that are felt to conflict 
with the personality” (Goldstein 1940, 146).
24.  For example, Goldstein writes that the doctor-patient relationship is a situation 
“in which the one wants to help the other gain a pattern that corresponds, as much 
as possible, to his nature” (1934/1939, 449). This point is discussed further by Can-
guilhem (1989/2012, 63).
25.  I use the term “agency” in an expansive sense, not restricted to conscious, goal-
driven behavior of human beings.
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research. Genuine agency is granted to the organism under investigation.26 

Because of the importance he gives to this notion of agency, which we 

may think of as the spontaneous, self-determined activity of the organism, 

Goldstein goes so far as to say that the effects of externally imposed causes, 

such as the stimuli in conditioning experiments, always need to be inter-

preted in relation to the whole organism and what it is trying to achieve 

at that time (1940, 133). For example, he writes that genuine habits can be 

acquired through conditioned reflexes only if they help the child toward 

the “actualization of its personality” (Goldstein 1940, 158).

We can think of this difference in terms of the degree of abstraction away 

from the dependency relationships that can be observed empirically. The 

naive observation of an animal like a rat finds it being both causally affected 

by its surroundings and also as a cause and initiator of events within those 

surroundings due to its acting to further its own needs. Behaviorism, to quite 

an extreme degree, abstracts away from, or black boxes, the causes initially 

perceived to be initiated within the mind of the animal, and it treats the ani-

mal merely as a conduit for effects passively received from the environment, 

especially those stimuli and reinforcements selected by the experimenter. 

Even though operant conditioning uses the self-initiated behavior of the 

animal, the point of the research is to bring the behavior as far as possi

ble under external control.27 This downplaying of influences stemming from 

the experimental subject simplifies the picture because there is no need to 

countenance the possibility of reciprocal causation between the animal and 

its surroundings, nor the possibility of hidden springs of agency (i.e., mental 

causation). A linear causal scheme—the stimulus-response pairing—papers 

over those tricky possibilities. Goldstein’s framework, instead, envisages a 

more complicated picture of circular causality, both within the organism and 

26.  This contrast between theories that do and do not grant genuine agency to organ-
isms tracks the difference within evolutionary biology discussed by Walsh (2015, 
chapter 10), between theories that posit organisms’ goal-directed behavior as playing 
a role in the shaping of evolutionary processes, and nonagential theories, such as the 
Modern Synthesis. The parallel is not coincidental, since Goldstein was a member of 
the holist and organicist movements in biology, in which organism-level explanations 
are privileged, whereas the Modern Synthesis neglects organism-level explanations in 
favor of gene- and population-level ones.
27.  Here, it is useful to think of behaviorism as offering externalist explanations in 
the sense discussed by Godfrey-Smith (1996).
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covering organism-environment interactions. This, he believes, is closer to 

the observed phenomena: “We are dealing with a system in which the sin-

gle phenomena mutually influence one another through a circular process, 

which has no beginning and no end. If, starting with the observation of 

reflexes, we try in unbiased fashion to understand the behavior of an organ-

ism, the facts everywhere force such a point of view upon us” (Goldstein 

1940, 127).

This picture of the nervous system as comprising these paths of circu-

lar causation comes from taking in the complexity more as it stands and 

not attempting to simplify very much via experiments or modeling. But the 

price of this acceptance of complication is that the scientist’s descriptions 

will not be as clear as they would be if more simplifications were introduced. 

Another of Skinner’s charges is that Goldstein’s theory of the nervous system 

lacks clarity. Yet the clarity and intelligibility of the reflex theory came from 

presupposing that holism, the characteristic of widespread mutual influence 

asserted by Goldstein, is not true.

We can also understand these two perspectives as being shaped by two 

kinds of real-world ambitions. The reflex theory, especially in its behavior-

ist incarnation, seeks control of an animal for the investigator’s purposes, 

which are extraneous to the animal itself. A long-term goal of the program 

was social engineering through control of human behavior by the selection 

of environmental stimuli and conditioning regimes. The agency relevant to 

the ends of the program is only that of the investigator, who is external to the 

target of control. In contrast, the agency of the organism is fundamental to 

Goldstein’s conception of the practical goal of research, which is to enhance 

self-actualizing processes within the patient in order to bring about recovery. 

These contrasting approaches to agency account for the striking difference in 

the importance granted to ecological validity within these two programs. (I 

include here “ethological validity,” the question of whether an experimental 

paradigm allows display of the typical behaviors of the animal.)

For the reflex approach, lack of ecological validity is a problem only inso-

far as it might interfere with the goal of achieving external control. If the lack 

of it is due to simplifications that aid instrumental success, then the deficit 

is actually a benefit. But for Goldstein, lack of ecological validity is necessar-

ily a problem because it will prevent the researcher being able to observe the 

behaviors that are the clues to the inherent nature of the organism. This risks 

both the epistemic aim of the research (learning about those natures) and the 
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therapeutic aims. The behaviorist emphasis on external control also puts a 

premium on discovering stable, manipulable, and linear causal relationships 

at the expense of recognition of the array of less stable, less manipulable, 

and more interconnected dependencies that are there to be observed under 

ethologically valid conditions.

3.4  The Afterlife of the Reflex Theory

In the previous section, we saw that the force of the attack on the reflex the-

ory, as presented in section 3.2, is somewhat lessened if we acknowledge that 

the criticisms stemmed from a very different scientific perspective, without 

commonality in some fundamental assumptions. Scientific traditions come 

with their own standards of success, and we might take up a charitable inter-

pretative stance by judging reflexology according to the standard held by 

its own practitioners, that of prediction and control. An immanent critique, 

so called; yet even by this benchmark, the reflex theory cannot be judged 

a success. Skinner is quite notorious for his claims made for the potential 

of behaviorism to bring about a utopian world through social engineering 

(Smith 1996). But these goals were, alas, not met. Indeed, other than the 

flourishing of the industries of marketing and advertising (Buckley 1989, 

chapter 8), reflexology does not have a hallmark success comparable with 

those of other areas of research associated with Loeb, such as Gregory Good-

win Pincus’s invention of the contraceptive pill (Pauly 1987, 194).

An illustrative case in point comes from the work of Keller and Marian 

Breland, two former assistants on Skinner’s so-called pigeon project. As Skin-

ner (1947/1961, 227) wrote on the true agenda of experimental psychology, 

“the basic engineering problem is to acquire control. . . . . It is not a matter of 

bringing the world into the laboratory, but of extending the practices of an 

experimental science to the world at large.” The Brelands took up this chal-

lenge, setting out to mass-produce novelty displays of conditioned behaviors, 

in a variety of animal species for commercial purposes. Yet, the theoretical 

predictions derived from laboratory experiments were overwhelmed by “ani-

mal misbehavior”—the failure of animals to learn simple, reinforced actions 

because of the interruption of instincts (Breland and Breland 1961). In a 

detailed study of this episode, Ramsden (2021, 89–90) explains that “as the 

Brelands took operant conditioning beyond the confines of the laboratory, 
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Skinner’s tidy system began to fracture, and the ‘nature’ of the organism 

began to override the machine-like predictability of conditioned behavior.”

To Skinner’s consternation, the Brelands reached the conclusion that 

ethology—the study of the natural behaviors of animals within their envi-

ronmental niches—is indeed indispensable in the study of animal psychol

ogy. What this attempted application of reflexology shows is that in the 

end, ecological invalidity bit back: when reflexology was extended beyond 

its niche experimental conditions, the oversimplified poverty of this con-

ceptual framework undermined its ambitions.

From a vantage point built from over 100 years of further research on the 

central nervous system, it might seem incredible that scientists of stature 

ever believed that the reflex arc would be the one key to demystify brain 

and behavior. To our retrospective view, the reflex theory now appears obvi-

ously too simple to account for the phenomena that it was supposed to—it 

looks simplistic. We might ask what it was that made the reflex theory so 

appealing. There is some suggestion that its value was precisely in its being 

so simple—an attractive oversimplification. Hough, in his critical piece on 

the theory, writes of how its “diagrammatic clearness” has shaped research-

ers’ “mental approach” to their problems, and how it naturally aligns with 

textbook expositions that begin with peripheral neuroanatomy and end 

with the physiology of the brain (1915, 408). Fearing observes, “The reflex 

arc is easily diagrammed in the textbook,” but he also warns that “such a 

diagram readily forms the basis for a discussion of simple stimulus-response 

relationships, which is misleading even in connection with the simpler ani-

mal responses, and positively inapplicable to the more complex organic 

responses” (1930, 288). Karl Lashley (a onetime student of the behaviorist 

psychologist Watson) relates that the passing down of the textbook picture 

across generations has given it an entrenched, unquestioned, status:

In the course of time there has been built up a simple, traditional, textbook account of 

the mechanism of reaction, prepared for students’ consumption. Repeated copying 

from one text to another has crystallized it, and early instruction has given us faith 

in it. The original sources have been almost lost to view and with them the appre-

ciation of the difficulties, the uncertainties, the many unsubstantiated assumptions 

which underlie every assertion of the classical account. (1931, 16, emphasis original)

A cautionary lesson here is that the scientists’ instinctive tendency to 

head in the direction of simplicity—their simpletropism, so to speak—can 

sometimes send them in the wrong direction.
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However, it is not that the reflex theory and its offshoot in behaviorism 

died out completely. Arguably, there is continuity in an ethos, stretching 

from reflexology to cybernetics, and from there to cognitive science and 

computational neuroscience, which also seeks the duplication of cogni-

tion in machines, as we saw with the work of Hull and Baernstein (1929) 

on conditioning in a mechanical device.28 The key point is that while strict 

behaviorists, following operationist and instrumentalist principles, eschewed 

the positing of hidden variables within the brain or mind of the animal, 

there were always strands of reflexology, such as Pavlov’s, that envisaged the 

strengthening and weakening of reflex connections within the nervous sys-

tem as mechanisms underlying behavioral conditioning. There was, there-

fore, always a strand of reflexology amenable to the positing of connections 

and variables, causally mediating stimulus and response, that are not directly 

observable in behavior. This is the approach that carried through into later 

computational theories of the brain, especially the connectionist or neural 

network models. For example, Donald Hebb’s (1949) “neural-assembly” the-

ory of associative learning within the brain is considered an important pre-

cursor to connectionism.29 He drew heavily from the reflex tradition, though 

clashing with behaviorist orthodoxy (Hebb 1960). Certainly, there is con-

tinuity between the methodologies of the reflexologists and experimental 

neuroscience today, such as the division between stimulus and response criti-

cized by Dewey, and the various learning paradigms discussed by Machamer 

(2009). Reinforcement learning is all the rage both in AI research and neuro-

science today, and its two parents are neoclassical economics and behavior-

ism (Castelle under review).30

Perhaps the most fundamental point is that current neuroscience is con-

tinuous with the reflex tradition in its adherence to the picture in which the 

inner agency of the animal is left on the margins of research. Indeed, the 

idea that a brain could be conceived as an organ in a self-actualizing sys-

tem that seeks to realize its own nature now sounds somewhat unscientific, 

28.  See Carr (2020) for an account of the shift from behaviorism to cybernetics, and 
ultimately to cognitivism, with more emphasis on discontinuity.
29.  Rosenblatt, the inventor of the Perceptron, an early neural network model, writes, 
“Hebb’s philosophy of approach seems close to our own, and his work has been a 
source of inspiration for much of what has been proposed here” (1958, 407).
30.  See also Haugeland (1978, 225), Dennett (1981, chapter 5) on the continuity 
between behaviorism and computational cognitive science.
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and this shows how today’s neuroscience is so definitively estranged from 

the organicist tradition of Goldstein.31 In his own lifetime, Goldstein’s theo-

ries were not considered unscientific or overly metaphysical. He had a suc-

cessful research career, although it was disrupted by exile and emigration to 

the US. Goldstein’s neurological work is now best known to philosophers 

through his collaboration with Adhémar Gelb, which features prominently 

in Merleau-Ponty’s Phenomenology of Perception. Self-actualization did have 

one widely known descendent in Abraham Maslow’s theory of the hierar-

chy of needs. But a neurobiology that paid equal heed to the agency of the 

experimenters and the subject of an experiment was not to carry the day. The 

spirit of the times, we may surmise, was with the externalizing approach of 

the reflex theory.

More concretely, we should appreciate how later computational theories 

grew out of the need to look inside the behaviorist’s black box, without really 

abandoning the idea that the behaving animal is more of a passive machine 

than an active agent. Goldstein (1940, 129–131) discusses Tolman’s (1938) 

experiments on rats’ learning paths through mazes, noting his recognition 

of the need to posit internal factors (“intervening variables”) in order to 

account for the data. Goldstein takes these observations to be vindication of 

his own rejection of reflexology. But it is telling that this is the same research 

often identified as the start of the cognitive revolution, the herald of the 

new era in which behavior would be explained in terms of manipulation 

of representations (such as spatial maps) by the onboard computers within 

the rat’s brain. The successor theory to reflexology was therefore dominated 

by the analogy between the brain and a particular kind of machine, the com-

puter. This analogy excludes the very feature of organisms that is central for 

Goldstein—their self-driven activity—for computers, like all other machines 

built to date, do not have agency of their own but are projections of the 

agency of the people who make and use them. They are highly sophisticated 

but inert arrangements of matter, which passively receive input and deliver 

output at their users’ bidding, a bit like the simple reflex, awaiting a stimulus 

to trigger its response.

31.  But see section 5.2 in chapter 5 on the return of ethological ideas within twenty-
first-century neuroscience.
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I believe that the model is a useful and indeed unescapable tool of thought, in 

that it enables us to think about the unfamiliar in terms of the familiar. There 

are, however, dangers in its use: it is the function of criticism to disclose these 

dangers, so that the tool may be used with confidence.

—Percy Bridgman (1927, 53)

The relationship between brain and computer is crucial to the interpretation 

of theoretical neuroscience, but it has received relatively little attention from 

philosophers of neuroscience. This chapter argues that much of the popu-

larity of the brain-computer comparison can be explained by its utility as a 

way of simplifying the brain. I will argue that the relation between brain and 

computer should be understood as one of analogy, whereby comparisons are 

drawn between electronic systems—engineered to be somewhat functionally 

similar to biological ones—and the vastly more complicated organic brain. 

The implication, to be pursued in chapter 9, is that there are limitations to 

the scientific understanding of the brain and cognition, including conscious-

ness, which stem from the radical abstraction imposed by the computational 

framework.

Section  4.1 gives a brief history of the development of the computa-

tional theory as it originated within the cybernetics movement, a program 

of research very much fixated on the building of self-regulating, lifelike 

machines, and on the perceived equivalences between machines and organ-

isms. Section 4.2 describes how the brain-computer comparison motivates a 

distinction between the aspects of neuroanatomy and physiology that are for 

information processing, as opposed to mere structural and metabolic support. This 

makes research in neurobiology more efficient by channeling the possibly 

4  Your Brain Is Like a Computer
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endless delineation of biochemical interactions along the paths carved out 

by hypotheses arrived at by first assuming that the brain is a computer. How-

ever, the empirical successes of this research program, made possible because 

of this gain in efficiency, do not warrant the conclusion that the neural sys-

tems themselves compute the functions specified in the models, or that the 

brain itself is literally a computer. Section 4.3 presents an alternative to the 

literal interpretation of neurocomputational models, based on accounts of 

analogical reasoning in science and the formal idealism introduced in chap-

ter 2. Finally, section 4.4 argues that my analogical interpretation fits better 

with philosophical accounts of modeling practice elsewhere in science, while 

avoiding metaphysical quandaries about the conditions for computational 

implementation. Even if the neurocomputational theory remains the only 

game in town, we should not be tempted to think that the undeniable differ-

ences between brains and computers do not make a difference to cognitive 

capacities and experiences, as they are to be found in living creatures.

4.1  From Cybernetics to the Computational Brain

My aim . . . ​is simply to copy the living brain.

—Ross Ashby (1954, 130)

A conclusion of chapter 3 was that there is continuity in a tradition that 

stems from early-twentieth-century reflex physiology to computational 

neuroscience as we know it today. A characteristic of this tradition is that 

it applies methodologies borrowed from the physical sciences to biologi-

cal objects. Relatedly, it sees no obstacle in principle to the replication of 

the operations of neural systems in nonliving, artificial devices. However, 

reflexology, as exemplified in the research of Loeb, Sherrington, and Pavlov, 

was largely empirical rather than mathematical. It attempted to theorize 

the nervous system directly, as it were, not via the intermediary of physical 

models analogous to the nervous system. This section offers a very potted 

account of the rise of computationalism, the successor to the reflex theory, 

which came to serve as an overarching framework for building explanations 

of how the brain and nervous system give rise to cognition and behavior. As 

we will see, the cybernetics movement of the mid-twentieth century is the 

connecting link, for it was imprinted with ideas from reflexology while at 

the same time originating concepts for the neural network modeling that 

Downloaded from http://direct.mit.edu/books/book-pdf/2345162/book_9780262378628.pdf by guest on 25 March 2024



Your Brain Is Like a Computer	 93

dominates computational neuroscience today. Given the limited scope of 

this section, I am ignoring the path that leads to computational neurosci-

ence from mainstream post-Chomskian cognitive science and symbolic AI. 

Furthermore, I am neglecting to discuss the economic and political condi-

tions that nurtured cybernetics and computationalism in the UK and US.1 

To repeat the warning of chapter 1, my focus on abstraction in neurosci-

ence is itself an abstraction from the myriad background factors that have 

in combination shaped the discipline as we know it today.

The topic of this chapter is really that of simplification through math-

ematization, the process that normally goes under the heading of model-

ing and idealization in philosophy of science. However, the situation is 

complicated in neuroscience because of the way that researchers have relied 

on the comparison between brain and computer to scaffold the process of 

mathematization. But it is not that the computer-analogy is the only path 

to mathematization. The most successful quantitative model in the history 

of neuroscience is arguably the Hodgkin-Huxley model, and this achieves a 

mathematization of the action potential by way of an analogy between the 

neuron and a simple electrical circuit (Levy 2014). Yet the dominant, quan-

titative approach in neuroscience does not reside with the characterization 

of the brain as a conglomeration of such circuits, but rather with the brain 

as a computer. This was not always the case. The first serious steps toward 

mathematization in neurophysiology did not involve analogies with artifi-

cial devices. I am referring here to the work of Nicolas Rashevsky, a Ukrainian 

émigré to the US who originally trained as a physicist and founded a labo-

ratory for biophysics at Chicago University before World War II. He moti-

vated the development of highly idealized, biologically implausible models 

of such targets as neural excitation and the conditioned reflex by invoking 

the methods that had been for centuries employed successfully in physics 

to manage the complexity of observed phenomena (Rashevsky 1938). He 

wrote in an article for the journal Philosophy of Science:

The important thing in the mathematical method is to abstract from a very com-

plex group of phenomena its essential features and thereby to simplify the problem. 

The more complex features are then taken care of gradually, according to the degree 

of their importance and complexity, as second, third, and higher approximations. 

1.  See, for instance, Galison (1994), Edwards (1996), Gerovitch (2002), and Medina 
(2014) for contextual histories of cybernetics in various world regions.
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True, by abstracting, we lose, so to say, contact with reality; but no harm is done by 

this as long as we keep it in mind. We thus see that the complexity of biological phe-

nomena is rather an argument for the use of mathematical methods than against it. 

In the case of a simple phenomenon we may hope to understand it without the use 

of mathematics, by simple inspection. But in a complex case we are left hopeless 

without mathematics. (Rashevsky 1934, 178, emphasis in original)

This paper then continues with a long defense of idealization, show-

ing its contribution to the past successes of physics. Despite Rashevsky’s 

spirited support of such methods, he suffered continual criticisms from 

colleagues who were more knowledgeable in biology that his models were 

too unrealistic to be of any use, being rather disconnected from empirical 

observation and lacking in predictive power (Abraham 2004, 336).

Rashevsky’s approach was to try to mathematize the nervous system 

directly. This contrasts with an indirect approach in which one builds a 

physical device in some respects functionally equivalent to a neural system 

and uses the mathematical description of the device as the first approxima-

tion of the original neural target. It was the indirect approach that eventu-

ally took center stage within the cybernetics movement, and this maneuver 

is nicely described by the primatologist Solly Zuckerman as follows: “It is 

unlikely that all this knowledge [of the mind-brain relation] is going to 

be obtained from a direct attack on the living organism. . . . ​Fortunately, 

however, recent developments in electronics allow us to represent at least 

part of the problem by analogy. Machines can be made—and exist—which 

exhibit some attributes of mental processes” (Zuckerman 1950, 30).

Zuckerman goes on to mention the negative feedback machines of Ross 

Ashby and Norbert Wiener as models of core functions of the nervous sys-

tem, and then digital computers as models of memory. This essay appeared 

in a volume entitled The Physical Basis of Mind, following pieces by Charles 

Sherrington and E. D. Adrian, two eminences of British neurophysiology, 

both of which strike a rather pessimistic tone about the prospects for mate-

rialistic explanations of the mind. It is this that Zuckerman is reacting to: 

the “direct attack” of the physiologists may have disappointed, but the 

indirect strategy of the engineers was ready to take the lead.

Ashby and Wiener were, respectively, representatives of the UK and US 

movements in cybernetics.2 Wiener was quite explicit about the employ-

2.  See Kline (2015), Husbands and Holland (2008), and Pickering (2010) on these 
traditions.

Downloaded from http://direct.mit.edu/books/book-pdf/2345162/book_9780262378628.pdf by guest on 25 March 2024



Your Brain Is Like a Computer	 95

ment of invented objects (i.e., “material models”) as a method of simplifi-

cation. For example, Rosenblueth and Wiener (1945, 316) write about the 

centrality of models in science, either formal or concrete, as simpler stand-

ins to facilitate the understanding and control of things in the world that 

are, in general, too complex to be grasped without abstraction. Of concrete, 

material models, Rosenblueth and Wiener state that they amount to “the 

representation of a complex system by a system which is assumed simpler 

and which is also to have some properties similar to those selected for study 

in the original complex system” (1945, 317). Such models, when judiciously 

employed, can allow a phenomenon from a familiar field to replace one 

from an unfamiliar area of research, and often experiments are easier to 

carry out on the replacement system. Even though Rosenblueth and Wie-

ner’s analysis of material models recognizes that they are stand-ins for more 

complex, unfamiliar systems, the general tenor of Wiener’s cybernetics was 

to elide differences between the operational principles of living organisms 

and self-regulating artifacts, as evidenced in the subtitle of his best-selling 

book Cybernetics: Or the Control and Communication in the Animal and the 

Machine.

The same elision is a feature of the writings of Ashby and another well-

known practitioner of cybernetics in Britain, Grey Walter. Both were neu-

rologists by training and hobbyist inventors. Ashby’s Design for a Brain, first 

published in 1952, begins by asserting that the difference between the brain 

and machines invented so far is due to the contingent fact of the inventions 

not employing an operating principle crucial to adaptation in the brain. 

Thus, an aim of the book is “to show that by use of this principle a machine’s 

behaviour may be made as adaptive as we please, and that the principle may 

be capable of explaining even the adaptiveness of Man” (Ashby 1954, 1). 

Incidentally, the book continues with an invocation of Pavlov’s distinction 

between innate and learned reflexes. With Walter, the connection to Pav-

lov is even stronger. His first research project, when studying for a master’s 

degree at Cambridge University, was conducted under the guidance of a sci-

entist trained by Pavlov. In Walter’s book The Living Brain, Pavlov’s work is 

discussed with high appreciation, and a meeting with the man in person is 

mentioned. Walter’s most famous invention was the “Tortoise,” also known 

by the pseudo-Linnean name Machina speculatrix. These were simple, autono-

mous robots that gave the impression of purposeful exploratory behavior, 

by seeking lights and avoiding obstacles. Reflexology was obviously central 

to the design, as it was with the machine built for learning, the Machina 
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docilis.3 Their movements were determined by a phototropism, and their 

model nervous system consisted of “two sense reflexes” (Walter 1953, 125ff). 

Walter presented them as a proof of principle that it is possible to get com-

plex, unpredictable, and lifelike behavior from the right arrangement of 

mechanical parts. Although, Walter emphasizes, it would not be possible to 

build a model nervous system by reconstructing each neuron in an artificial 

medium, strides can be made by building quite simple models that have an 

overall similarity to some core functions of the brain (Walter 1953, 117–118). 

Walter did not present his devices as mere simulations or mimics of living 

creatures, but actually as instantiating the same “principles” that we find in 

nature, such as the “internal stability” of organisms (1953, 125–130). The 

interesting physiological quality of such devices, their claim to be “part of a 

mirror of the brain,” is due precisely to the possible demonstration of these 

principles (131).

We will now turn to the work of McCulloch and Pitts, which is more 

connected with neuromodeling as we know it today. Single-cell neurophys-

iology and the engineering of digital computers both grew into maturity 

in the early 1940s and significantly influenced one another (Arbib 2016). 

These were all part of the heady cybernetics brew, and its intoxications 

can be detected in the landmark paper by McCulloch and Pitts (1943), “A 

Logical Calculus of the Ideas Immanent in Nervous Activity.”4 McCull-

och and Pitts were part of Rashevsky’s circle at Chicago, and a point of 

commonality is their deployment of highly idealized models of neurons. 

McCulloch and Pitts represented the cells as simple devices that sum over 

inputs and give all or nothing (i.e., digital) outputs, and these model neu-

rons were, as Kay (2001, 598) puts it, “deliberately as impoverished as 

possible,” comparable with frictionless surfaces and point particles. By 

showing that, under certain assumptions, small assemblies of connected 

model neurons could be taken to operate as logic gates, McCulloch and 

Pitts lent support to the claim that the brain is, literally, a computer. 

McCulloch (1965/2016, 169) would later write that “man-made machines 

3.  M. docilis was a version of the Tortoise with the addition of a “conditioned reflex 
analogue,” a machine that, Walter argues, “behaves astonishingly like an animal” 
(1953, 178–179).
4.  See Abraham (2016) and Dupuy (2009) on McCulloch’s presence in the history of 
cybernetics, and Piccinini (2020, chapter 5) for an analysis of the 1943 paper.
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are not brains, but brains are a very ill-understood variety of computing 

machines.”5

The idealization of neurons as input-output devices is central to the 

computational theory of the brain as it has developed since then, even 

though other assumptions, such as digital coding, have been relaxed. 

The idea of computation via a neural network is foundational to the con-

nectionist stream of AI, which has now evolved into deep learning.6 To 

sum up, claims for the physiological relevance of these artificial, material 

models of the nervous system turn on the assumption that in spite of the 

manifest differences between the two kinds of things, at a certain level of 

abstraction, they share some essential commonality, such as the principles 

invoked by Grey Walter, or the computational structures that would be 

appealed to today. This is a strong assumption, and it calls for scrutiny; it 

is also the basis for the literal interpretation of these models. This inter-

pretation of neurocomputational models has certainly been popular since 

McCulloch gave voice to it. Computer models of neural systems are taken 

to be more than mere models in the sense of simulations, like weather 

models, that represent but do not reenact the processes of nature. Instead, 

both neural circuits and the computational models of them are thought 

by the majority of neuroscientists to be doing the same thing—processing 

information (Miłkowski 2018) and representing states of things in the 

world beyond the brain (Churchland, Koch, and Sejnowski 1994). We 

will next consider the advantages offered by computational models, while 

remaining neutral, for the time being, on whether it is correct to interpret 

them literally.

5.  John von Neumann is one well-known figure from the cybernetics movement 
who was concerned about overestimation of the similarity between neural systems 
and computational models. For instance, he writes:

What is not demonstrated by the McCulloch and Pitts result is equally important. It does not 
prove that any circuit you are designing in this manner really occurs in nature. It does not fol-
low that the other functions of the nerve cell which have been dropped from this description 
are not essential. It does not follow that there is not a considerable problem left just in saying 
what you think is to be described. (von Neumann and Burks 1966, 46)

6.  A connecting figure is Frank Rosenblatt, inventor of the perceptron. He writes 
explicitly of these three-layered neural network models being extremely simplified in 
comparison to actual neural networks, but that they should exemplify “some of the 
fundamental properties of intelligent systems in general” (1958, 387).
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4.2  Simplification and the Computational Brain

What is the importance of machines in the philosophy of mind? I think that 

machines have both a positive and a negative importance. The positive impor-

tance of machines was that it was in connection with machines, computing 

machines in particular, that the notion of functional organization first appeared.

—Hilary Putnam (1973/1997, 97)

One might ask why computationalism went on to become the dominant 

theoretical framework for neuroscience.7 This is a broad question that 

deserves a complex answer, referring to historical and sociological factors 

and staying sensitive to differences between subspecialities within the sci-

ence. However, for the purposes of this chapter, I offer a simple answer, 

which boils down to one characteristic of computationalism—that it pro-

vides neuroscientists with a very useful, perhaps indispensable means to 

simplify their object of investigation. More specifically, my claims are that 

(1) computationalism permits a distinction between the functional (“infor-

mation processing”) aspects of neural anatomy and physiology and what 

is merely background support,8 thereby justifying the neglect of countless 

layers of biological complexity; and (2) computational theory, in giving the 

specification of neural functions, provides an ingredient lacking in purely 

mechanistic approaches to neurobiology (like the reflex theory), without 

which it would be far more difficult to separate relevant from irrelevant 

causal factors, and hence to state when the characterization of a mechanism 

is sufficiently complete.

7.  Note that this should not be confused with the issue of whether the dominant 
mode of explanation in neuroscience is mechanistic or computational. Those on the 
mechanist side of this debate, such as Kaplan (2011), acknowledge the importance 
of computationalism in theoretical neuroscience and argue in addition that compu-
tational models provide mechanistic explanations. In section 4.2.2,. I briefly argue 
that the contribution of computational models is distinct from that of mechanistic 
models. See Chirimuuta (2014, 2018) for the full arguments.
8.  This is often referred to as “metabolic support,” but this term is employed with a 
wide meaning, including not just intracellular metabolic processes or activity of glial 
cells, but also the vascular and immunological systems that are integrated with the 
brain. Haueis (2018) also discusses the distinction between cognitive and noncogni-
tive functions of the nervous system.
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4.2.1  Putting Function in the Foreground

As Kurt Goldstein (1934/1939) repeatedly argued, most of the supposed back-

ground factors within an organism are highly relevant to the state of the 

whole creature in ways that experimental biology largely ignores. Yet, even if, 

like Goldstein, one doubts that there is an absolute distinction between the 

phenomenon of interest and background factors, it must still be acknowl-

edged that it is appropriate for the biologist to delineate a phenomenon by 

means of selective attention, as with a visual image affording figure-ground 

separation. It should not be news to anyone who has observed the practice of 

science that part of the task (and art) of devising a new experiment or expla-

nation is the drawing of a distinction between the target of investigation 

and the additional factors that can reasonably be classified as background 

conditions. For a system of any complexity (which is all the systems studied 

in biological sciences), the outcome of the endeavor largely turns on the apt-

ness of the distinction.

My contention here is that much of the value that the computational 

framework provides to neuroscience is in the distinction that it supports 

between the putative function of a neural system, the information processing 

that makes up the target of investigation, and the residual features that can 

be placed in the background as mere support systems. The classic character-

ization of the neuron as a device that gathers inputs at the dendrites, calcu-

lates a function, and delivers an output (i.e., a number of spikes sent down 

the axon) is the most prevalent way that this distinction has been put to use 

in neuroscience. While this picture is much broader than the McCulloch and 

Pitts formalism, they can be credited with disseminating the idea that the sin-

gle neuron is an input-output processing unit thereby giving neuromodelers 

an excuse for abstracting away from most of the cell biology underlying the 

reception and generation of action potentials. This was the opinion stated by 

the AI luminary Seymour Papert:

The liberating effect of the mode of thinking characteristic of the McCulloch and 

Pitts theory can be felt on two levels. . . . ​On the local level it eliminates all consider-

ation of the detailed biology of the individual cells from the problem of understand-

ing the integrative behaviour of the nervous system. This is done by postulating a 

hypothetical species of neuron defined entirely by the computation of an output as 

a logical function of a restricted set of input neurons. (1965/2016, xxxiii)

The utility of this simple picture goes a long way toward explaining 

the persistence of the “neuron doctrine”—the thesis that neurons are the 
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functional unit of the nervous system, whose exclusive job it is to receive, 

process, and send information—in the face of countervailing empirical 

findings (Bullock et al. 2005).9

The strategy, just outlined, for isolating the functional begins with the 

concrete neural system and abstracts away from it all features classified as 

nonfunctional background support. Another modus operandi is to start with 

the specification of a cognitive task (such as detection of edges in a photo

graph), then to consider what computations would be needed to achieve the 

task, and next to build an artificial system (i.e., a computational model) that 

performs it. With the model in place, the final step is to use it as a template or 

map when looking for activation and connectivity patterns in the brain that 

are responsible for the performance of this task. This strategy is described by 

neurophysiologist Jerome Lettvin in response to the criticism that computa-

tional models used in neuroscience—such as connectionist networks—lack 

similarity to actual neural systems:

Even if ideally one could record from any element or part of an element in situ, 

it is not in the least obvious how the records could be interpreted.10 To a greater 

degree than in any other current science, we must know what to look for in order 

to recognize it. . . .

This is where a prior art is needed, some understanding of process11 design. And 

that is where AI, PDP [parallel distributed processing], and the whole investment 

in building [neurocomputational models of intelligence] enter in. Critics carp that 

9.  Cao (2014) recommends going beyond the neuron doctrine to consider synapses 
and glia also as functional units of the nervous system. This raises the question of 
the technical feasibility of gathering synapse-resolution data of neural responses, and 
attempting to model the brain in such a fine-grained way (noting that each cortical 
neuron receives, on average, tens of thousands of inputs). If the neuron doctrine 
provides a good enough framework for modeling the brain, which is especially use-
ful for the activation patterns associated with observable behaviors (e.g., perception, 
learning, and decision making) that involve large populations of neurons, then there 
is little reason to attempt the impossible and replace neurons with synapses as the 
postulated fundamental signaling units, even if it is acknowledged that in the brain, 
much functional activity does occur within synapses. In later chapters, I take up the 
issue of the importance of these details that are relegated to the background in the 
classic neurocomputational picture.
10.  This, incidentally, is a point made vivid in a paper by Jonas and Kording (2017), 
“Could a neuroscientist understand a microprocessor?”
11.  Lettvin often uses the word “process” in his characterization of the engineering 
stance in neuroscience. It should not be confused with the notion of ‘process models’ 
in psychology or with other kinds of mechanistic models.
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the current golems do not resemble our friends Tom, Dick, or Harry. But the brute 

point is that a working golem is not only preferable to total ignorance, it also shows 

how processes can be designed analogous to those we are frustrated in explaining 

in terms of nervous action. It also suggests what to look for. (Lettvin 1988/2016: 

xvii–xviii)

If anything, the problem of “knowing what to look for” is more acute 

now than when Lettvin wrote this. In the last twenty years, the increase in 

the variety of tools and methods for observing neural activity (from sin-

gle cells to whole brains) has surprised and delighted many. However, the 

downside of these advances is that they bring to light kinds of complexity 

that were not previously apparent, especially at subcellular scales. This is 

how neuroscientist Yves Frégnac describes the situation: “Each overcoming 

of technological barriers opens a Pandora’s box by revealing hidden vari-

ables, mechanisms, and nonlinearities, adding new levels of complexity. 

By reaching the microscopic-scale resolution, advanced technologies have 

unveiled a new world of diversity and randomness, which was not apparent 

in pioneer functional studies using spike rate readout or mesoscopic imag-

ing of reduced sensitivity” (2017, 471).

Frégnac points to the need for a greater understanding of how mesoscopic 

and macroscopic regularities emerge from the processes observed micro-

scopically. But a wider point is that if artificial systems, sharing none of the 

microscopic details of the neural ones, can be built to duplicate some specific 

functions, albeit roughly, then there is an acceptable excuse for keeping shut 

the Pandora’s box of subcellular neurobiology.

4.2.2  Mechanism and Function

We will now consider the mutually supportive relationship between com-

putational modeling and mechanistic investigations of neural systems, 

ones that aim to uncover regular, delimited clusters of causal interac-

tions that explain physiological and cognitive phenomena, such as syn-

aptic plasticity and particular types of memory (Craver 2007; Craver and 

Darden 2013). (See section 2.2.2  in chapter 2 for more information.) In 

response to a criticism of the mechanistic account of explanation, which 

takes issue with the favoring of more detailed descriptions of mechanisms 

as providing better explanations than less detailed, “sketchy” ones, Craver 

and Kaplan (2018) emphasize that their account has never favored more 

detailed explanations per se, but has only suggested that explanations 
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including more of the relevant details may have the edge over less com-

plete ones. Even if we accept the picture of there being ontic mechanistic 

explanations, which include only relevant causal details, and exist inde

pendently of human scientists, there is still a question of how scientists 

learn to distinguish the relevant from the irrelevant factors to produce 

adequate epistemic explanations—that is, true enough representations 

of those neural mechanisms. In any biological system (and the nervous 

system especially), one finds a densely interconnected causal web with 

many layers of structural intricacy, as well as patterns of effect across vari

ous spatial and temporal scales. Craver and Kaplan appeal to a “mutual 

manipulability” criterion that is clear and unobjectionable on the face of 

it.12 However, if their norms for explanation are to be applied to prac-

tice, it becomes hard to see how only the causal factors in a neural sys-

tem relevant to a particular phenomenon—as opposed to background 

factors not constitutive of the mechanism itself—could be isolated if only 

the mechanistic perspective is employed. An individual neuron will have 

thousands of feasible targets or handles for experimental manipulation—

for example, the different kinds of ion channels, which could be blocked 

on select portions of the membrane; the various receptors that could be 

agonized or antagonized; and the countless proteins transcribed in the cell 

that could be targets of genetic manipulation. One needs to multiply this 

list of causal variables by 10 or 100 if the system comprises a small popula-

tion of neurons. One faces a combinatorial explosion of experiments that 

would be needed to determine the independent causal relevance of each 

of these factors in a putative mechanism. But, of course, neuroscientists do 

not plan sequences of experiments according to brute force search. When 

designing an experiment with the aim of determining which of the many 

causal variables present in a system are crucial to its behavior (given a cer-

tain explanatory question), how does a neuroscientist know which ones to 

select from an inexhaustible list? We should think of hypotheses regarding 

the information-processing functions of neuronal structures as heuristics 

that drastically reduce this search space.

12.  Craver and Kaplan write, “A factor is constitutively relevant when (ideal) inter-
ventions on putative component parts can be used to change the explanandum 
phenomenon as a whole and, conversely, interventions on the explanandum phe-
nomenon as a whole can produce changes in the component parts” (2018, 20).
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For example, at a fairly high level of abstraction, only net excitation 

minus inhibition is the causal factor relevant to determining whether a 

neuron’s firing rate will increase or decrease. This abstraction disregards the 

kinds of neurotransmitters found at the synapse, receptor types, and loca-

tion of synapses.13 And, of course, this is the kind of abstraction fostered by 

the neuron doctrine and fundamental to the McCulloch and Pitts vision of 

the brain as a computer in which the logic gates are built from neurons.14 

In essence, without any prior assumption in place about what the neuron’s 

function is, and about what aspects of physiology and anatomy are rel-

evant to it, the search for relevant causal factors would have to proceed by 

brute force or be guided by mere prejudice. What this indicates is that the 

functional, informational processing perspective on neural systems is an 

indispensable complement to the mechanistic approach in neurobiology.15 

13.  Craver and Kaplan (2018, 19, n16) appeal to the purely causal notion of “screening 
off” to address the question of why complete explanations do not have to go down the 
full reductionist route, referring to the most fundamental particle such as quarks. The 
idea is that “low-level differences” will be ignored if they “make no relevant difference 
once the higher-level behaviour is fixed.” It is important to appreciate that for the kind 
of neuronal details discussed here, screening off should not be expected to occur—that 
is, these excluded details do causally affect neuronal behavior in ways that are not fully 
summarized by the higher-level variables of net excitation and inhibition. This implies 
that a search for “relevant details” that proceeded only by the method of searching for 
higher-level causal variables to replace lower-level ones would not result in the abstrac-
tions found most useful in computational neuroscience.
14.  There is latitude in the abstracting assumptions. I have described a case where 
total inhibition is subtracted from total excitation, whereas McCulloch and Pitts 
(1943, 118) posit that inhibitory input at any one synapse will cancel out the effects 
of excitation.
15.  Although he does not focus on computational explanations, this is actually the 
conclusion reached by Craver (2013, 155), who writes (emphasis in original):

Identification of functions is a crucial step in the discovery of mechanisms. We no longer 
speak of mechanisms simpliciter, but rather as mechanisms for some behavior. Mechanistic 
descriptions thus come loaded with teleological content concerning the role, goal, purpose, 
or preferred behavior of the mechanism. This teleological loading cannot be reduced to fea-
tures of the causal structure of the word, but it is ineliminable from our physiological, and 
particularly neural, sciences, precisely because their central goal is to make the busy and buzz-
ing confusion of complex systems intelligible and, in some cases, usable.

His perspective-dependent account of functional attributions is different from 
that of other mechanists like Piccinini (2020), who are straightforward realists about 
“teleo-functions.”
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Another way to make this point is just to say that the boundaries around 

neural mechanisms are not simply there in the brain, discoverable through 

a small enough number of causal experiments. There are many justifiable 

ways for the neuroscientist to carve up the subsystems of the brain into 

mechanisms and separate them from background conditions. The compu-

tational perspective is one approach that has suggested to scientists a par-

ticularly fruitful set of delineations.

The difference between the physicist’s and the engineer’s outlook is a 

useful analog to the difference between mechanistic and computational 

approaches in neuroscience (Fairhall 2014). When one considers the struc-

tures of the brain as a physical system, it is a nexus of causal interactions 

in which considerations of function are alien; in contrast, the notions of 

design and function are inherent to the engineering approach, from which 

it is natural to regard the brain as a target of reverse engineering (Sterling 

and Laughlin 2015). With the computational approach, one begins with the 

consideration of what the neural system is for, and the question of how that 

function is achieved is addressed after this is settled. When dealing with 

complex, biological systems, any attempt to employ only the function-less 

physics stance would quickly lose its way among tangled causal details.16 

It is the task of theory in science to provide a synoptic view of the subject 

matter, and thereby suggest pathways for future experimentation.

In current neuroscience, the computational theory is best developed. I 

do not claim that this is the only possible theory of the nervous system, 

and I certainly am not claiming that computational theory should float free 

from experimentally derived facts about neural mechanisms. Ideally, these 

two perspectives are mutually constraining and complementary.

4.3  Two Interpretations of the Brain-Computer Relationship

The building of machines in order to elucidate processes underlying vital 

functions, including cognition, is a strategy that goes back at least to the 

16.  This point is made by the neurologist Francis Walshe (1961, 131). See also Knuut-
tila and Loettgers (2014, 79) on the contrast between physics- and engineering-based 
approaches within synthetic biology research. We might also be reminded of the 
“design stance” (Dennett 1987), though this comes with strong assumptions of adap-
tationism and optimality.
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automaton-makers of the eighteenth century.17 But an open question here is 

whether, to understand the efficacy of this pattern of investigation, one must 

resort to a literal interpretation of the artificial models as duplicating and 

thereby bringing to light the very same process or function occurring in the 

living system, or if one can still make sense of the research strategy by taking 

the machine-organism relationship as one of analogy. That is, saying that 

the organism is like the machine in some way, but making salient the numer-

ous differences (disanalogies) that limit the appropriateness of the machine-

organism comparison to the narrow domain of the phenomena explicitly 

modeled.18

I do think that the literal interpretation is the majority view among 

neuroscientists—given a wide enough definition of computers as systems that 

encode input, manipulate those representations, and transform them into 

output according to some specific algorithm (Marcus 2015, 209). Complaints 

from neuroscientists that the brain is not a computer usually just make the 

point that the brain is not a digital, serial machine, while still asserting that 

the brain is some other kind of computer. Many assert that any disanalogies 

between information processing as it occurs in electronic and neural tissue 

do not present an obstacle to computational replications of brain processes, 

and these will eventually provide explanations of cognitive capacities, bring-

ing about the reproduction of those capacities in machines.19

17.  As Canguilhem (1963, 510) describes, “Texts, taken from Quesnay, Vaucanson and 
Le Cat, do not indeed leave any doubt that their common plan was to use the resources 
of automatism as a dodge, or as a trick with theoretical intent, in order to elucidate the 
mechanism of physiological functions by the reduction of the unknown to the known, 
and by complete reproduction of analogous effects in an experimentally intelligible 
manner.”
18.  A potential misinterpretation of section 4.2 may push one toward the literal inter-
pretation. If one thinks that the brain—like a digital computer designed to be indif-
ferent to variation in magnetic grains in a hard drive, for instance—is a device that 
ignores its own complexity, so to speak, then an abstract computational description 
of the system can be equally, literally true of the brain as of the machine. However, 
the point of section 4.2 is to explain how and why neuroscientists use computational 
models to ignore the complexity of the brain, leaving it a live possibility that those 
details do matter to cognition in animals (see section 4.4 and chapters 9 and 10).
19.  This strong view is best exemplified in the work of researchers at the interface 
between neuroscience and the deep learning style of AI, such as Hassabis et al. (2017) 
and Yamins and DiCarlo (2016). It subscribes to the computational theory of mind 
much discussed in the philosophy of mind, psychology, and cognitive science. The 
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Drawing on the account presented in chapter  2, the literal interpreta-

tion of neurocomputational models should be taken as an instance of for-

mal realism (see section 2.1). It supposes that the structure represented in 

the computational model obtains in the neural system independently of the 

scientist’s experimental and theoretical work. Moreover, this computational 

structure is taken to be essential to the brain having the cognitive capacities 

that it does. By itself, formal realism does not entail the multiple realiza-

tion of a form in different material substrates. But given that the forms in 

question here are computations, multiple realizability does follow because 

of the fact that the same computation (e.g., multiplication of 653 x 10) in 

principle can be performed by a variety of material realizers, including an 

artificial computer (mechanical or electronic) and biological tissue. This pic-

ture of abstract mathematical forms being realized in an array of material 

substrates—breathing intelligence into them, one might say—has had long 

appeal in the history of computation.20

While the formal realist takes for granted the brute existence of mathemat-

ical forms, which are realized equivalently in brains or computers, the formal 

idealist takes the mathematical forms represented in computational models of 

the brain not to be straightforward discoveries regarding mathematical struc-

ture or information processing in the brain, but rather constructs developed 

through an arduous process of experimentation, model building, and ana-

logical reasoning. The proposal is that the mathematical structures that make 

the brain intelligible to the scientist, as an organ whose function is to process 

information, are to some extent imposed onto the neural system by the sci-

entist and should not be taken as straightforward discoveries of mathemati-

cal forms inherent in the system. Since, by hypothesis, neurocomputational 

models are not discoveries of the inherent computational capacities of the 

brain but are as abstract and idealized as any other models in science, an ana-

logical interpretation of these models is more appropriate than a literal one.

My analogical interpretation is an alternative to the literal interpreta-

tions of neural-computational models.21 To preempt the worry that there 

implications of my interpretation of neurocomputational models for the computa-
tional theory of mind will be discussed in chapters 9 and 10.
20.  See for instance, Morar (2015, 126) in relation to Leibniz.
21.  Another alternative to literalism is the deflationary approach of Cao (2019). 
Her resistance to literal interpretations of neurocomputational models turns not on 
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is no substantial difference between the literal and analogical interpreta-

tions, I specify at the outset that I am not defining analogies as isomor-

phisms or homomorphisms that obtain between the brain and its model,22 

since with that definition, the analogical relationship would amount to 

the instantiation of the same structure (i.e., a computational structure) 

in the neural system and the model. It would follow, on the assumption 

of a mapping or structural account of computational implementation (see 

Sprevak 2018), that there would be no daylight between the literal and 

analogical interpretations of neurocomputational models. This is because 

the literal interpretation is the claim that the neural system and its model 

compute approximately the same function. From my conception, to say 

that a model should be interpreted analogically is to say that the target is 

like the model in some way that may turn out to depend on the interests 

of the scientists and the techniques that they employ. The crucial point is 

that the structure in the brain found to be relevantly similar to the com-

putational model is not assumed to be an inherent, human-independent 

fact about the brain. Rather, it is an ideal pattern, a regularity in the neural 

data whose features are determined not only by the brain under investiga-

tion, but also by scientists doing the investigating (see sections 2.1.1 and 

2.2.1 in chapter 2).23

In the classic account, Hesse (1966) charts the structure of analogical 

reasoning in science using diagrams that compare two systems (the analog 

source and target) along vertical and horizontal axes. For example, the ana-

logical inference that Mars, because of its similarities with the Earth, may 

support life is depicted in figure 1.

Figure  4.2 presents an example drawn from the work of David Marr 

and Shimon Ullman, whose framework for computational modeling in 

abstraction, but on the failure of these models to support a robust notion of repre
sentational content. The issue of neurorepresentations will be taken up in chapter 6.
22.  See Knuuttila and Loettgers (2014, 87) on why analogical reasoning in science 
goes beyond the isolation of structures that map from model to target. The analogical 
interpretation should also not be confused with analog computation or the analog-
model account of the brain (Shagrir 2010).
23.  This proposal bears interesting similarities with Sprevak’s account of compu-
tational implementation, which argues that all descriptions of material systems as 
computing systems are idealized representations of the concrete physical processes 
(unpublished manuscript).
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neuroscience has been highly influential.24 Because of the “behavioral” simi-

larity observed across the systems (the ability to detect edges), and the simi-

larities in patterns of activation in response to edges, the analogical inference 

can be made that the neuronal activity in the cat’s early visual system—the 

response pattern of retinal ganglion cells (RGCs) and neurons in the lateral 

geniculate nucleus (LGN)—is like the computation of a Laplacian of Gauss-

ian function.25

In addition to the observation of similar overall behavior, the dissimilar-

ities in the material substrates of the systems may be noted and the abstrac-

tive inference made that these dissimilarities are not relevant to the scientist’s 

investigation of the capacity for edge detection. Importantly, the point is 

not that the differences in implementation are irrelevant tout court, but 

that they can reasonably be ignored for this kind of investigation of this 

particular capacity. The possibility of such abstractions is a precondition for 

Marr’s (1982, 25) distinction between the levels of computational theory 

and algorithm and that of implementation. This kind of abstractive infer-

ence fits with my account of how computational models aid neuroscientists 

in the simplification of the brain, since the abstractions of computational 

24.  See Marr and Ullman (1981); Marr (1982, 54–65).
25.  See Egan (2017) and Shagrir (2010) for discussions of this example that instead 
endorse the literal interpretation. Likewise, Marr (1982, 64) makes the stronger (but 
hedged) claim that these neurons are computing the function: “it is not too unrea-
sonable to propose that the ∇2G function is what is carried by the X cells of the retina 
and lateral geniculate body, positive values being carried by the on-center X cells, 
and negative values by the off-center X cells.” This amounts to a formal realism. I do 
not suppose my weaker interpretation to be the one put forward by Marr himself.

Known similarities

Earth (Source)

Orbits the Sun
Has a moon

Revolves on axis
Subject to gravity

Supports life

Inferred similarity

==>

Mars (Target)

Orbits the Sun
Has moons

Revolves on axis
Subject to gravity

May support life

Figure 4.1
A schematic for analogical reasoning, after Bartha (2016).
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neuroscience are licensed by this sort of analogy. But by putting my account 

of abstraction and simplification in the context of a nonliteral, analogi-

cal approach to interpretation of neurocomputational models, there is no 

commitment to any “computational essentialism” about the brain, or to 

the idea that the biological functions of the brain are computational func-

tions and therefore must be multiply realizable.

According to formal idealism, the relevant similarities between the model 

and target are not simply there, waiting to be discovered by the scientist; 

rather in some respect they are constructed or massaged from equivocal data. 

Some details from our example will reinforce my proposal. Figure 4.3 illus-

trates the correspondence between the Laplacian of Gaussian model and the 

neural data (Marr and Ullman 1981, 165; Marr 1982, 65). If one examines 

the average neural traces depicted here, and in addition the data presented in 

the original neurophysiology papers from which these examples were taken 

(Rodieck and Stone 1965, figures 1 and 2; Dreher and Sanderson 1973), it is 

Figure 4.2
Abstractive pattern of analogical reasoning. The text in gray indicates features that 

are observable but ignored for the purposes of modeling and explanation.

Observed similarities

Observed dissimilarities

Computer (Source)
Laplacian of Gaussian 

Model

Detects edges in a photo.
Characteristic peaks of 
model output for onset 

and offset of edges.

Peaks for onset and 
offset are symmetrical.
Implemented in digital

computer.

Model computes 
Laplacian of

Gaussian function.

Inferred similarity 

==>

Brain (Target)
LGN or RGC neurons in cat

Responds to moving 
edges. Average increases 
in neural activity for onset 

and offset of edges.

Peaks for onset and offset 
are asymmetrical. [Ignored]
Is an electrically excitable 

cell.

RGC and LGN neurons 
can be modeled as 

computing Laplacian of 
Gaussian function.

==>

Abstractive inference

Differences in implementation are not relevant to 
the particular capacity investigated here. 
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striking that there is a pattern of the neural response that goes unnoted by 

Marr and is not captured by the model—the asymmetry of peak response, 

depending on the polarity of the visual stimulus, and whether the bar stimu-

lus is being swept onto the neuron’s receptive field or is leaving the field. 

For example, the first column of figure 4.3 shows that a light edge on a gray 

background generates more neuronal response than a dark edge, whereas the 

model response is exactly equal. The general point is that the positing of an 

analogy—here, that a common pattern of activation occurs in the model and 

in the neurons—requires selective attention to certain similarities and the 

ignoring of dissimilarities. This is a matter of judgment by the scientist, and 

Edge Thin bar Wide bar

Figure 4.3
Comparison between a Laplacian of Gaussian model and neural data. The neural 

data indicate an unequal treatment of light versus dark edges and bars that is not 

captured by the model. From Marr and Ullman (1981, 165); Marr (1982, 65).
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the data do not usually, by themselves, force one choice over all others; Marr 

could have taken the asymmetry to be a relevant part of the neuronal behav

ior and come up with a mathematical model that captured this. One should 

not think of the structure described in any particular model as simply dupli-

cating a structure that is preexisting in nature, as a formal realist would assert. 

Instead, what is strictly common between the neural system and model is 

an ideal pattern that does not exist independently of the scientists’ activi-

ties, data processing, and theoretical choices. My point is, basically, that as 

a consequence of the complexity of the neural events, and therefore of the 

data sets gleaned from them, the determination of signal versus noise is not 

unambiguous, and for that reason, the data sets afford numerous plausible 

mathematical descriptions. Marr treated the asymmetry in the responses as 

noise and left it out of his model; another scientist would have been equally 

justified in treating it as a signal, a feature to be included in the model.

Formal idealism does not suppose that the finding of structure in a target 

of investigation is purely made up and then projected onto the data, but it 

does take it to be the result of the researcher’s interaction with the target 

such that the human-dependent element of the structure can never be fully 

removed. This is reminiscent of the way that the visual system finds shapes 

in what might appear to be very disordered stimuli, as demonstrated with 

certain images in Gestalt psychology. While visual Gestalts are in most cases 

formed involuntarily, I emphasize that the scientist has a certain amount of 

latitude and choice in the determination of the patterns that are the target 

of modeling because these depend on methods of data collection, data pro

cessing (at minimum, averaging), and style of representation. The role of 

experimentation in this interaction, toward the shaping of ideal patterns, 

will be explored in chapter 5.

Another way of describing the difference between formal realism and ide-

alism is that in the first case, the abstractions of computational neuroscience 

are presented as if the work of the researchers has been to pare away all the 

extraneous neurobiological details to find the essence (form) of the brain 

qua information processor. This is something like picking all the leaves off 

a tree and asserting that the bare trunk and branches are all that is essential 

to the tree. In contrast, the formal idealist does not assert that the compu-

tation described in the model conveys the essential features of the neural-

cognitive system. The abstractions introduced by the model are taken to be 

there for the convenience of the scientist (i.e., to provide an economical 
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representation that does not overload the scientist with a million details), 

rather than a means by which the most essential structures of the brain are 

revealed. A botanist would not insist that the leafless representation cap-

tures all that is indispensable to explaining the capacities of a tree; nonethe-

less, a pared-down representation would be useful, and good enough, for 

many purposes.

4.4  Assessment

In the previous section, I presented the two ways of interpreting neurocompu-

tational models without dwelling on the reasons why my analogical interpre-

tation should be preferred to the more common literal one. This is the task left 

for the final section of this chapter, where I argue that, first, the literal inter-

pretation leaves theoretical neuroscience hostage to there being an acceptable 

answer to the philosophical question of computational implementation; and 

second, the literal interpretation prematurely forecloses consideration of neu-

robiological details, not shared with computers, that may well be prerequisite 

for cognition as it occurs in animals.

4.4.1  Why Not Interpret Literally?

The analogical interpretation is a doctrine of restraint: it declines to infer from 

the success of the computational approach in neuroscience that the brain 

really is a computer—an organic device performing calculations to which the 

neurocomputational models provide a closer or wider approximation. For 

one thing, it is wise to remember that a model is only ever a model—that a 

model can never deliver the full, complete truth of its representational target. 

We should not be seduced into thinking that neurocomputational models 

are an exception here. My proposal brings the discussion of neurocomputa-

tional models in line with accounts of abstraction and idealization elsewhere 

in the philosophy of science, where it is recognized that models are always 

distortions, and as such cannot be read at face value.

Moreover, the literal interpretation requires taking on some difficult meta-

physical commitments and philosophical challenges. First, formal realism 

here presupposes a realism about mathematical structures normally associated 

with Platonism—the existence of mathematical abstracta outside of space and 

time. At the same time, mathematical operations are taken to be realized in 

the material brain, which is located in time and space. The standard answer 
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to the question of how the abstract and concrete can be related in this way is 

to point to the concept of implementation, but this raises its own difficulties 

(Putnam 1988; Searle 1992; Godfrey-Smith 2009). The formal realist claims 

that a brain area implements some computations specified by neuroscien-

tists. The triviality objection to the computational theory of mind asks what 

warrants the claim that the brain implements those ones, but not any of the 

countless other computations that also map onto a physical system like the 

brain (Sprevak 2018). The formal realist must appeal to a theory of implemen-

tation that would allow her to rule out the trivial computations but retain 

the claim that the brain does implement certain computations. The pressing 

challenge is to give an account of the implementation of computations in 

concrete systems that does not imply pancomputationalism (as conceded by 

Chalmers 2012), while showing how the computational level of explanation 

is somewhat autonomous from the implementational one (Ritchie and Pic-

cinini 2018). The selling point of my alternative interpretation is that it does 

not come with the burden of needing to solve such problems.

The formal idealist is not faced with this challenge because she is not 

asserting that the brain implements any computations, but rather that it is 

useful to model the brain as if it were computing. Compare our case with 

the interpretation of the liquid-drop model of the atomic nucleus (Morrison 

2011). A literal interpretation would say that the nucleus simply is a liquid 

drop. A proponent of this interpretation is then committed to explicating 

what it is that makes liquids different from solids and what the liquidity of 

the nucleus fundamentally is. Moreover, there is the difficulty of account-

ing for the predictive success of alternative models of the nucleus that do 

not make this assumption. In contrast, someone following my proposal can 

merely say that the nucleus is like a liquid drop in some way, that making this 

comparison is useful to nuclear physics, and then put questions about the 

metaphysics of liquidity to one side. All that needs to be assumed is that some 

things are uncontroversially and pretheoretically liquid drops, or computers,26 

while theoretical inquiries about the nature of liquidity and computation are 

tangential.

It is to be noted, of course, that some current theories of implementation 

have been tailored to address the question of how the brain can be said to 

26.  Factory-made computing machines are computers, uncontroversially and 
pretheoretically.

Downloaded from http://direct.mit.edu/books/book-pdf/2345162/book_9780262378628.pdf by guest on 25 March 2024



114	 Chapter 4

compute biologically relevant functions, and of course the formal realist may 

refer to them (see, e.g., Piccinini 2020). I will point out here that no theory 

of implementation is uncontroversial, and appealing to such a theory cannot 

by itself make the case for formal realism over formal idealism. One posi-

tive argument for formal realism would be to say that if the computational 

description is a useful simplification—and a good analogy—it must be that it 

does a good job of capturing the structure of the target system. That, then, is 

reason to think that the system is literally computational. Conversely, if the 

target system is not literally computational, then the computational approach 

must provide a poor simplification and a misleading analogy. But this argu-

ment simply assumes that models work—provide useful simplifications—to 

the extent that they faithfully represent structures that exist in the target sys-

tem, an assumption at odds with so much work in the philosophy of science 

on modeling, abstraction, and idealization.

Most of the models that scientists employ, such as the liquid-drop model of 

the nucleus, represent their target in ways known to be false in some respects. 

This does not detract from their utility as means for prediction or simplifica-

tion of the subject matter, but it does mean that we should be wary about mak-

ing metaphysical claims about the nature of the target on the basis of them. 

There is no reason to think that models in neuroscience work any differently.

Another issue, noted already, is that the literal interpretation implies the 

multiple realizability of computations underlying intelligence, and therefore 

it comes with the expectation that there should be multiple realization as an 

empirical fact. Polger and Shapiro (2016) present a thorough case that the 

evidence for multiple realization is lacking, contrary to the expectations of 

many philosophers of mind. Of course others have a different opinion, and it 

is not obvious that the challenges are insurmountable (Aizawa 2018). I would 

not claim that formal realism is untenable just because of the empirical case 

that has been made against multiple realization. However, the fact that this 

challenge exists does provide motivation for the development of an alterna-

tive that does not need to meet this demand.

4.4.2  Beyond the Analogy

The negative importance of machines, however, is that they tempt us to oversim-

plification. The notion of functional organization became clear to us through sys-

tems with a very restricted, very specific functional organization. So the temptation 
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is present to assume that we must have that restricted and specific kind of func-

tional organization.

—Hilary Putnam (1973/1997, 97)

According to the literal interpretation, the features of the brain that are 

essential to cognition are such that they can be captured in a computational 

model and realized in a nonliving machine. This viewpoint does recognize 

that there are countless differences between neural and artificial substrates 

(the “hardware” of these systems, so to speak), but it denies that these are 

truly relevant to the explanation of cognition. Yet, given the number of 

central, unresolved questions in neuroscience concerning the relationship 

between brain, mind, and behavior, it is much too soon to exclude so many 

factors from consideration. It is a selling point of the analogical interpreta-

tion that while it sees the value of the simplifications afforded by the com-

putational theory, it does not rule out a priori that researchers may need 

to look beyond computational analogies to answer these central questions. 

This strikes a balance between accepting the pragmatic necessity of abstrac-

tion and retaining awareness that every simplifying framework comes with 

inherent limitations. Next, I will mention some of the most salient differ-

ences between brains and computers and why they should not be neglected 

in neuroscientific and philosophical investigations of cognition.

The neurophysiologist E. A. Adrian (1954) once quipped that “what we 

can learn from the machines is how our brains must differ from them.”27 

The most glaring difference is that the brain is an organ in a living body, 

made of metabolizing cells, whereas the computer is an inorganic machine. 

Various important disanalogies stem from this point. Sprevak (2021 draft, 

2) points out that compared with brains, computers such as electronic PC’s 

have a quite simple internal physical structure. The relevant notions of sim-

plicity here concern the homogeneity of parts and their arrangement, and 

the fact that in the computer, it is straightforward to identify the processes 

implementing a given computation and to set them apart from background 

physical activity. The brain is the extreme opposite, in terms of heterogene-

ity of parts and organization, even within one individual, as well as the dif-

ficulty of identifying the cognitive processes against background biological 

processes without the imposition of a simplifying schema. Another point 

27.  This was quoted approvingly by Canguilhem (1963, 516).
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is that the brain, unlike the computer, lacks an unequivocal hierarchical 

structure. As neuroanatomists have noted, there are multiple ways to chart 

the hierarchy of feedforward and feedback connections within the brain, 

given that the “wiring” is so complicated (Hilgetag and Goulas 2020). A 

simplification is made available by treating the brain as if it were a parallel 

computer, with determinate, hierarchical processing streams, even though 

it departs from this picture in many respects.

Digital computers are physical systems whose operation depends on there 

being an invariance in their functioning, across a range of different physi-

cal states. For instance, fluctuations in voltage levels get ignored in digital 

signaling and are classified as either 0 or 1. More dramatically, two machines 

can be extremely different physically, but identical with regard to what they 

compute. This means that the workings of computers afford a separation into 

distinct levels of analysis. Most obviously, they can be described at the level 

or hardware or software. Neuroscientists often suppose the brain is like that 

(e.g., Marr 1982, Carandini 2012), but this is more of a simplifying scheme 

than a discovery of neurophysiology. There is an argument originating with 

Herbert Simon (1962), that for complex biological systems to be robust and 

evolvable, they must be roughly modular and separable into levels, just as 

artificial devices are. Similarly, Ballard (2015) argues that for brains to func-

tion as control systems for the body, they must have these computer-like 

characteristics, where description of their operations separates cleanly into 

different levels of abstraction. However, these arguments do no more than 

show that there must be at least some tolerance for differences in the fine-

grained states of neural components, and some modularity (i.e., anatomical 

separation of function), but not that the brain must have these architectural 

and functional characteristics of computers.28 Crucially, these considerations 

do not get around the basic fact pointed out by Sprevak—namely, that brains, 

as physical systems, are a whole lot more complicated than computers.

One significant point of difference is that the hardware of electronic 

computers is engineered not to undergo material changes with use, whereas 

there is an inherent tendency for biological cells, whose material constitu-

tion is changing as they metabolize, to undergo use-based plasticity (Chir-

imuuta 2017a; Godfrey-Smith 2016a). Thus, it should not surprise us that 

28.  This issue is discussed in more detail in Chirimuuta (2022a).
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the plasticity shown by the brain, with ordinary development and deliber-

ate learning, is very much unlike what is seen in computational machines, 

even in artificial neural networks designed to simulate synaptic plasticity. 

Another point is that functional characteristics are far more apparent and 

clear-cut in artificial systems than in living systems because they have been 

designed by humans with specific functions in mind. What this means is 

that the usefulness of engineering analogs for understanding the “princi

ples of neural design” (Sterling and Laughlin 2015) is tempered by the way 

that they impose an engineer’s template, in which structure-function rela-

tionships are fixed and transparent, and this may mask important consid-

erations of variability and multiplicity of function.

One consequence of the literal interpretation of the computational 

framework in neuroscience is that the explanatory focus on commonalities 

between computers and brains closes down the possibility of understand-

ing how the specifically biological properties of brains are fundamental to 

cognition. As Godfrey-Smith puts it, philosophers of mind seek to under-

stand how mind arises from matter, and one important option to keep open 

is that life is the bridge between matter and mind—that all living systems 

have protocognitive properties—characteristics whose explanations could 

be steps toward understanding cognition in animals with nervous systems. 

But this is not a viable option if it is assumed at the outset that in principle, 

a nonliving computer could have all the cognitive capacities of an animal. 

Godfrey-Smith therefore invites us to attend to the differences:

Part of the message . . . ​is the enormous functional difference between a living sys-

tem and this AI system, despite any coarse-grained cognitive similarity. This differ-

ence can be hard to keep in focus because the AI system, imagined or real, has been 

designed as a non-living analogue of a living system. It’s only a partial analogue, 

though; it has a combination of no metabolism but a lot of information-processing. 

In the living system, the information-processing side of its activity is integrated 

with the metabolic side, so the two can only share coarse-grained functional prop-

erties. (Godfrey-Smith 2016a, 502)

Therefore, he argues that computational models are far more limited 

in their potential to explain cognition in living systems than is normally 

assumed.

One further observation is that prevalence of the literal interpretation may 

well be due to motivations that are extrinsic to consideration of the models 

and target systems themselves. Canguilhem (1963, 514–515) observes that 
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in biology, but not in physics, researchers tend to overinterpret analogical 

models. His point is that in physics, the analogical use of quantitative mod-

els does not invite researchers to project the ontology of the analog source 

onto the analog target, a caution that is often lacking when such models are 

used in biology. The difference is that the use of an inorganic system as the 

analog source for an organic target carries with it a promise of a reduction of 

the organic to the inorganic—that is, making sense of the organic in purely 

physical terms—which is why the literal interpretations are so alluring. Can-

guilhem goes on to say that cybernetic models are a good example of this 

tendency, especially when the models’ actions (e.g., in a robot) tend to simu-

late or mimic natural behavior.

To conclude, formal realism offers the promise that it is possible to devise 

quantitative, formal, and perspicacious models that faithfully mirror the pro

cesses in the nervous system that underlie cognition. This invites people to 

interpret neurocomputational models literally, and when this interpretation 

holds sway, there is a tendency to downplay the disanalogies between brains 

and silicon computers (even if the official doctrine is that the brain is not like 

your PC), and moreover to keep the processes relegated to mere metabolic 

support on the sidelines of theoretical neuroscience. It remains to be seen 

whether the mysteries of biological cognition will open up to an approach 

that treats organic intelligence as sui generis, not sharing essential common-

alities with the functions of computing machines. But the replacement of 

formal realism with an approach that pays attention to the various modes of 

analogy and disanalogy between brains and computers will at least help us 

avoid any false directions indicated by overreaching, literal interpretations.
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The scientist, lacking the power to reign over a part of the world as master and 

possessor, constructs an image of it that is simpler but at the same time as faithful 

to it as possible, acquiring in this way a mastery over the image . . . if not over 

the world.

—Jean-Pierre Dupuy (2009, 138)

The quotation marks in this chapter title are because the cells in question are 

simple only under a certain manner of investigation. Chapter 3 was about 

simplification introduced through experimental design. The simple reflex 

was a creature of laboratory induced dissociations between parts of the 

nervous system; it was not an original, latent element as the reflex theorists 

had sometimes supposed. Chapter 4 was about the simplifications afforded 

by modeling the brain as a kind of computer. We will now examine how 

these two strategies come together. In a study of early research on primary 

visual cortex, we will see how the simplifications of experimentation and 

data analysis lead to the production of the ideal patterns, the phenomena 

that are the target of computer modeling. The argument of section 5.1 will 

be that the simple cell—one of the major classes of neurons introduced 

sixty years ago in the standard account of primary visual cortex—was in 

some sense a creation, something artificial, but that this did not undermine 

its theoretical and technological usefulness. However, there were legiti-

mate concerns raised by neuroscientists because of its nonnatural status.1 

1.  Of course, the cell is not “nonnatural” in the same sense that a human-made 
object, like a computer, is. In chapter 4, the important distinction was between an 
organ of a living body (the brain) and a purpose-built tool (the computer). Here, we 

5  Ideal Patterns and “Simple” Cells
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Section 5.2 will show how the turn away from the methods of classic visual 

physiology were in part prompted by these worries. Within the last decade, 

there has been a shift toward big data, ethological methods, but an irony of 

the story, as I will relate, is that artifice has not gone away but only changed 

its role.

5.1  The Creation of the Simple Cell

All good experiments are good abstractions.

—Arturo Rosenblueth and Norbert Wiener (1945, 316)

An essential, though easily discounted feature of most laboratories is that 

there are walls and a roof, built not only to keep the researchers dry and 

warm, but to create a controlled environment for the experimental occur-

rences themselves, shielding them from the instability of the weather and, 

where required, from other influences such as electromagnetic radiation, 

which could introduce unknown complications to the processes under inves-

tigation. As Cartwright (1983, 1999) has argued, the successful demonstration 

and explanation of physical phenomena in the laboratory are no warrant to 

think that those same phenomena can occur elsewhere.2 The phenomenon of 

the simple cell is in its own way dependent on shielding, although not against 

rain and radiation, but instead from interfering factors generated elsewhere 

in the brain due to the inherent tendency of the cortex to shape itself to the 

complexities of its environment.

Before setting out this line of argument, some preliminary information 

about visual physiology needs to be provided. The receptive field (RF) of a 

visually responsive neuron represents how the cell responds to patterns of 

light present in the visual field. It describes the kind of stimulus that acti-

vates a neuron—a moving bar, a red patch, or whatever, at a particular loca-

tion in space. The term was introduced by Sherrington in the context of 

the reflex theory, where the receptive field of the scratch reflex was the area 

attend instead to the difference between a brain area in its “natural” state outside the 
laboratory, as opposed to its condition when affected by experimental manipulations.
2.  See also Sullivan’s (2009) foundational work on experimental neuroscience, which 
highlights the problem of translating experimental constructs from one laboratory to 
another.
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of skin on the dog’s back, within which a stimulus could trigger the reflex-

ive movement of the hind leg, at least in the “spinal dog” (Sherrington 

1906b).3 It was later used to characterize the responses of optic nerve fibers 

(Hartline 1938) and retinal ganglion cells of the frog (Barlow 1953).

Primary visual cortex (V1)4 is the region that receives input from visu-

ally responsive cells in the lateral geniculate nucleus (LGN) of the thalamus, 

which in turn have received input from retinal ganglion cells (RGCs). The 

iconic studies of Hubel and Wiesel (1962, 1968) mapped the receptive fields 

of neurons in this region of the cat and monkey brain, respectively. Whereas 

RGC’s and LGN cells had been found to have circular receptive fields, in which 

light falling in a small central “ON” region excites the neuron, and light in a 

concentric surrounding “OFF” field inhibits the neuron,5 the receptive fields 

of V1 cells were elongated, consisting of parallel bar-shaped areas of ON and 

OFF regions (see figure 5.1a).6 This suggested to Hubel and Wiesel that certain 

VI neurons acquired their response characteristics by receiving input from a 

series of LGN neurons whose circular receptive fields were spatially aligned 

(see figure 5.1b).

Such neurons were termed simple cells, and their receptive fields were 

noted to have spatially segregated and spatially antagonistic ON and OFF 

subregions. They also showed summation within each region, which is to 

say that there was a cumulative effect of increasing the number of spots of 

light falling within the subregion, with more spots in the ON region lead-

ing to a larger response. It was emphasized that the simple cell’s response 

to any stimulus could be predicted from its arrangement of ON and OFF 

3.  Note that this is the RF of a reflex arc, not an individual neuron. Sherrington’s 
introduction of this term leads Yuste (2015, 487) to state (erroneously) that Sher-
rington (1906) treated the single neuron as the basic functional unit (namely, the 
“integrative unit”) of the nervous system.
4.  This is also known as striate cortex or Brodmann’s area 17. Strictly speaking, the 
term “V1” should be reserved for primates, but I will use it more widely than that.
5.  And the opposite is the case for OFF-center cells. This juxtaposition of excitatory 
and inhibitory subregions in the RF is known as spatial antagonism.
6.  See Hubel and Wiesel (1998) for an overview of their work, including the “acciden-
tal” discovery of elongated RFs; also, their (1977) Ferrier Lecture includes a summary of 
findings relating to functional architecture not discussed in this chapter, such as ocular 
dominance columns. The concepts of ocular dominance and orientation columns cer-
tainly relate to Hubel and Wiesel’s sense of “order” (i.e., simplicity) in the visual cortex 
(1977, 55).
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Figure 5.1
(a) An “ON”-center receptive field of a simple cell. Here, the x’s represent the area 

in the visual field that gives excitatory responses when light is flashed there, and 

the triangles represent areas that produce inhibition. From Hubel and Wiesel (1962, 

figure 2). (b) Schema for explaining simple cell RFs. Four LGN neurons with circular-

surround RFs (top right) give input to one simple cell (bottom right), giving an elon-

gated RF (left). From Hubel and Wiesel (1962, figure 19). (c) Schema for explaining 

complex cell RFs. Three simple cells with phase-sensitive, elongated RFs (top right) 

give input to one complex cell (bottom right), giving a phase-insensitive elongated 

RF (left). Hubel and Wiesel (1962, fig 20).
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subregions.7 The cells termed complex failed to show at least one of these 

characteristics. Complex cells were not sensitive to the exact placement 

of a bar within the receptive field, and this suggested to Hubel and Wiesel 

that their response profiles were due to their receiving inputs from a series 

of simple cells whose elongated receptive fields formed a small array (see 

figure 5.1c).8 Thus we have a feedforward, hierarchical picture of the visual 

system in which the response profile of cells at each stage is assumed to be 

determined by the input received from neurons lower in the hierarchy.9

Given that the characterizations of Hubel and Wiesel were exclusively 

qualitative, other research groups developed quantitative approaches to 

receptive field mapping and to the simple/complex distinction. Later work 

showed that the various characteristics definitive of simple cells were all 

manifestations of an essential linearity of spatial summation (Movshon, 

Thompson, and Tolhurst 1978): the simple cell just adds up the total of light 

falling in its ON region and subtracts from it the total of light falling in its 

OFF region, such that its firing rate gives a running reflection of this calcu-

lation.10 Linear systems have appealingly simple characteristics, in particular 

that they are amenable to reductive analysis. Knowledge of the behavior of 

a linear system can be achieved through piecemeal examination of its parts, 

or as we should say here, its partial responses to pared down stimuli such as 

spots of lights, small white bars, sinusoidal gratings, or Gabor patches (see 

7.  See Mechler and Ringach (2002, 1017) on these characteristics.
8.  Hubel and Wiesel (1968) also used the classification of hypercomplex to refer to 
cells showing “end stopping”—inhibition when a stimulus is placed at the ends of 
the receptive fields. For ease of exposition, I will restrict my discussion to simple and 
complex cells.
9.  It is worth mentioning Hubel and Wiesel’s anatomical evidence for the 
hierarchy—the finding that simple cells were more likely to be found in layer 4 of 
V1, the layer that receives subcortical input. Also, Hubel and Wiesel present their 
scheme with some diffidence: “proposals such as those of Text-figs. 19 and 20 are 
obviously tentative and should not be interpreted literally” (1962, 144); the hierar-
chy is “possibly over-simplified” (1968, 217).
10.  Movshon et al. (1978), and subsequent researchers also posit that simple cells have 
an output nonlinearity, rectification, whereby negative values of summation due to 
inhibition are converted to a response of zero spikes. This is necessary because V1 cells 
have a low baseline firing rate. Thus the standard model of the simple cell is known as 
the linear-nonlinear (LN) model. See Carandini et al. (2005, figure 1) and Butts (2019, 
figure 3) on the LN model.
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figure 1.1 in chapter 1 for examples).11 Hence the pressure to examine the 

system as a whole, or in more complicated circumstances, is alleviated—or 

so the story would go.

5.1.1  The Experiment-to-Model Pipeline

I will now explain how it is that the simple cell—a V1 neuron whose activity 

reflects an essentially linear sum of light falling within its receptive field—is 

a creation of the laboratory. Masland and Martin (2007, R581) write that 

“experimental physiologists know all too well that sensory systems are only 

linear when the experimenter forces them to be so.” This might be com-

mon knowledge to experimentalists, but it demands some explication. The 

notion of “forcing” linearity amounts to the selection of experimental con-

ditions that induce more simple behavior in sensory systems than would 

occur otherwise. The two important simplifying strategies here are restrain-

ing behavior and constraining stimulation.

The experiments of Hubel and Wiesel (1962, 1968) and Movshon et al. 

(1978) were performed on anesthetized animals. Behavior, one factor that 

modulates responses in visual cortex, was eliminated. There would not be 

trial-to-trial variability due to behavioral and attentional shifts, as there 

would be in an awake, behaving animal. The result was a more regular data 

set.12 Hubel and Wiesel (1962, 123) justify this experimental choice by refer-

ring to an earlier study by Hubel (1959) on awake, loosely harnessed cats, 

which reported no qualitative difference in neural activity between those 

and anesthetized animals. Still, general anesthesia does cause a general sup-

pression of spontaneous activity in the cortex, which would be a matter 

of concern for future physiologists, as it was for Kuffler (1953). Regard-

ing stimulus constraints, the fact that use of simple artificial stimuli, like 

spots and bars of light, leads to simpler (i.e., more linear) neuronal responses 

is due to the inherent plasticity of the cortex. Neuronal responses tend to 

adapt themselves to the statistics of the prevailing stimulus regime and will 

show a more complex response profile when the stimuli themselves are more 

11.  See De Valois and De Valois (1988) on the application of linear systems theory 
(Fourier analysis) to vision science.
12.  This is not to imply that trial-to-trial variability is not still very large, even in 
anesthetized animals. See Arieli et  al. (1996) for the case that ongoing network 
dynamics account for this variability.
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complicated, as with images encountered in the environment outside the lab 

(David, Vinje, and Gallant 2004; Butts 2019, 454). Even more important, 

the use of stimuli, like oriented bars, that generate a peak response in only 

one population of neurons selective for that particular width and orientation 

means that the modulatory effect of neurons selective for different patterns 

(which would be activated by a complex image, containing a range of fea-

tures), is suppressed.

I am not claiming that the constraints on behavior and stimulation were 

consciously employed by Hubel, Wiesel, and other physiologists of this era 

in order to make neural activity more simple. It happens that just by follow-

ing the ideal of a well-controlled experiment, the investigator will be led 

to these choices. The aim is to eliminate factors that are both unobserved 

and uncontrolled. The use of anesthesia and artificial stimuli are two ways 

to make a better-controlled neurophysiological experiment. But because of 

the adaptiveness of the brain, the tendency for its activity patterns to shift 

with different behavioral and environmental contexts, these practices will 

have the effect of inducing a more regular and more linear response profile 

than would occur without them.

Figure 5.2 depicts what I call the experiment-to-model pipeline.13 By “brain 

activity in the wild” (1), I just mean the neural activity associated with 

13.  My discussion of it is limited to the example of classic V1 physiology, although 
this template should be applicable more widely. Indeed, the postclassical research 

1. Brain activity
in the wild

2. Brain activity
in the lab

3. Data set
4. Ideal pattern
(Phenomenon)

5. Explanatory
model

a) Experimental
conditions

b) Measurement c) Processing d) Computational
interpretation

Figure 5.2
The experiment-to-model pipeline. This is the schematic path from an experiment 

measuring neural activity during a specific task or stimulus regime to a model that 

interprets the neural activity as carrying out certain computations, offering an expla-

nation of the brain’s involvement in cognitive performance. The computational mod-

els are themselves abstract and idealized representations of neural activity, but they 

also depend on simplifications introduced early in the pipeline. As Butts (2019, 469) 

writes, “The use of simple stimuli leads to simple models of neural computation.”
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cognitive performances, such as vision, that an animal undertakes spontane-

ously or in response to nonexperimental situations. This is contrasted with 

“brain activity in the lab” (2), which is the neural activity associated with 

cognitive performances occurring under experimentally controlled condi-

tions. Simplifications again occur at the stage of measurement (figure 5.2b). 

The extracellular detection of action potentials of single neurons was the 

recording technology available at the time of Hubel and Wiesel’s studies.14 

With single unit, as opposed to population measurement, the physiologist 

is only examining one tiny component of the visual system at a time. While 

the practice of single-unit measurement was imposed by the technology 

available in the mid-twentieth century, it does in any case have a simplify-

ing effect. This mode of recording does not allow observation of the interac-

tion between the neuron and any other parts of the brain, so it forces the 

physiologist to treat all recorded activity either as stimulus-driven or noise. In 

addition, single-unit physiology involves cell selection. An article from this 

era would report at most the result of recording from hundreds of neurons 

out of the population of many thousands, if not millions.15 The experimenter 

would shift the position of the electrode, hunting for the cells that make 

large, visually driven responses. Thus, the sampling from the population was 

not at all random. Masland and Martin (2007) argue that physiologists have 

a tendency to record from neurons that can be classified as a certain homo-

geneous type of standard cells, like simple and complex ones. The outcome 

of measurement is a data set that abstracts away from the heterogeneity of 

response profiles and receptive field types in the original cortical population.

Various techniques fall under the stage of “processing” (figure 5.2c). 

Responses of any one neuron, to a given stimulus, would be averaged across 

trials; data would be analyzed with the aim of making a principled classifica-

tion of cell type. Olshausen and Field (2006, 190) highlight the significance of 

this stage, writing that “the way in which response properties are character-

ized can have a profound effect on the resulting theoretical framework that 

discussed in section 5.2 would be another good example of the pipeline. Motor cor-
tex presents other examples (see chapter 7).
14.  Note here the invention of the tungsten microelectrode by Hubel (1957), dis-
cussed by Bickle (2022).
15.  There are estimated to be about 140 million neurons in V1 of an adult human 
(Leuba and Kraftsik 1994).
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is adopted to explain the results.” I will mention one important classification 

tool: the F1/F0 ratio.16 When V1 neurons are stimulated with a sinusoidal grat-

ing that drifts across their receptive fields, some of them will give a response 

that is strongly modulated by the alternation of light and dark bars, whereas 

others show an activation that is steadier during the stimulation window (i.e., 

phase invariant). The F1/F0 ratio measures whether the cell is modulated or 

more phase invariant, and it was widely used to classify cells as linear or non-

linear, and hence simple or complex (Mechler and Ringach 2002, 1017). Use 

of this ratio effectively sharpens the category boundary between simple and 

complex cells, creating a distribution of two discrete populations out of an 

original population in which response properties form a blurred continuum.

We now reach stage (4), in which we have a phenomenon, an ideal pat-

tern. The philosophical dimensions of this notion will be provided in the 

next section. Here, I will just point out that it is at this stage that the simple 

cell makes its appearance. Certainly, there were cells in primary visual cor-

tex already before the experiment, but the particular profile definitive of the 

simple cell did not predate the operations of fixing experimental conditions, 

taking measurements, and processing the data. The ideal pattern is what is 

represented in the receptive field map of the simple cell (see figure 5.1a), 

which is itself a summary representation of neuronal responses to visual stim-

uli elicited in the course of an experiment. The ideal pattern or phenomenon 

can be the target of an explanatory model. When the phenomenon is given 

a computational interpretation—when it is hypothesized to perform a cer-

tain information-processing task in the economy of the brain—it is described 

mathematically as taking inputs from elsewhere in the brain and computing 

some output, a signal to be read out in a downstream area. As argued in chap-

ter 4, modeling introduces another mode of simplification—abstraction away 

from the organic underpinnings of the brain’s operations. For visual neurons, 

the explanatory model takes the form of an encoding model, a function over 

visual stimuli that makes a prediction of how the neuron will respond to any 

arbitrary configuration of light falling within its receptive field. The theoreti-

cal content of visual neuroscience is centered around such models (see sec-

tion 5.1.3). I have included an arrow leading back from the model to stages 

16.  This is calculated from the Fourier components of the cell’s average response to 
a drifting grating. It is the ratio of the first harmonic, F1, over the mean spike rate, F0 
(Movshon et al. 1978, 59).
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(a)–(c). This is because explanatory models and theoretical ideas shape the 

processes through which the ideal pattern is formed.17 Over the years, this 

sequence is iterated and refined many times.

5.1.2  Scientific Phenomena as Ideal Patterns

The initial outcome of the experiment is a data set generated through the 

measurement of neural activity. Since Bogen and Woodward (1988), it has 

been commonplace to say that phenomena, not raw data, are the target of 

explanatory models.18 Phenomena are the simplified patterns created by pro

cesses such as averaging and curve fitting that can potentially be explained 

by a theory, unlike the messy patterns of raw data. In their intuitive example 

of the melting point of lead, Bogen and Woodward describe how a series of 

thermometer measurements would show some variance, noise due to uncon-

trolled factors in the laboratory. As every high school experimentalist has 

been taught, the thing to do is take the mean of the raw data points. That 

value, Bogen and Woodward argue, is the melting point of lead—the phe-

nomenon to be explained. By their account, such phenomena are regularities 

that exist in nature independently of experimental controls and statistical 

processing, though they are somewhat masked by the uncontrolled occur-

rences that inevitably occur and lead to noise in the data.

17.  To give an example, we see in this passage from Hubel and Wiesel (1962, 145) 
that the theoretical proposal of a feedforward hierarchy settles concerns about the 
trial-and-error method that they used to search for effective stimuli for complex cells:

The method of stimulating the retina with small circular spots of light and recording from 
single visual cells has been a useful one in studies of the cat’s visual system. In the pathway 
from retina to cortex the excitatory and inhibitory areas mapped out by this means have been 
sufficient to account for responses to both stationary and moving patterns. Only when one 
reaches cortical cells with complex fields does the method fail. For these fields cannot generally 
be separated into excitatory and inhibitory regions. Instead of the direct small-spot method, 
one must resort to a trial-and-error system, and attempt to describe each cell in terms of the 
stimuli that most effectively influence firing. Here there is a risk of over- or under-estimating 
the complexity of the most effective stimuli, with corresponding lack of precision in the func-
tional description of the cell. For this reason it is encouraging to find that the properties of 
complex fields can be interpreted by the simple supposition that they receive projections from 
simple-field cells, a supposition made more likely by the anatomical findings of Part III.

18.  Phenomena are often equivalent to data models (McAllister 2007), but I do not 
restrict my use of the term to data models. See also Feest (2011) and Colaço (2020) on 
the characterization of phenomena in psychology and neuroscience.
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My proposal is that neurophenomena must not be thought of as “real 

patterns,” regularities that exist as much in the wild as in the laboratory. 

Instead, neurophenomena are ideal patterns, the regularized products of the 

series of simplifying procedures of the sort outlined in this discussion (and 

see section  2.1.1  in chapter  2). The intended contrast is with Potochnik 

(2017, chapter 2), who proposes that “real causal patterns” are the repre

sentational target of scientific models. With Potochnik’s use of the notion—

which is a departure from Dennett’s—these patterns have a reality that does 

not depend on there being an agent capable of discerning them (Potochnik 

2017, 28).19 According to Potochnik, observed phenomena comprise real 

causal patterns mixed with “noise” (which may be other causal patterns, 

not currently of interest to the researcher). The job of idealized models is to 

separate the wheat from the chaff, making the real pattern of interest more 

salient, comprehensible and useful. The notion of an ideal pattern is actu-

ally closer to Dennett’s “semirealist” intent than Potochnik’s “real causal 

pattern,” but I name it “ideal” to mark its distinctness from the commonly 

used sense of “real” as “just out there in nature” and “independent of the 

scientist.” Ideal patterns do not arise from the superposition of a perfect 

regularity with noise or with interfering regularities; instead, they are the 

product of scientists working on a material system to regularize its behavior 

and then enhancing this regularity through data processing.20 This approach 

fits with the haptic realism introduced in section 2.1 of chapter 2, whereby 

scientific knowledge is conceived as the product of the interaction between 

scientists and their target of investigation. Here, we see how this works in 

19.  The term “real pattern,” of course, is famous from Dennett (1991), who used it in 
a less robustly real sense than Potochnik. I argue elsewhere that the notion of “ideal 
patterns” is required to account for the nonfactive understanding provided by simpli-
fied models such as the LN model (Chirimuuta 2023a). That paper contains further 
discussion of ideal patterns and how they relate to scientific understanding. See McAl-
lister (1997) and Massimi (2011) for additional arguments that phenomena be treated 
as dependent on scientific activity, to some extent.
20.  The second stage is crucial. If these patterns were only causally dependent on 
the scientists’ activity, they would be as concretely real as any material artifact. But 
in addition, they come about through the scientists’ processing and interpreting the 
data derived from the controlled material system in particular ways that are underde-
termined by the system itself. This justifies the label “ideal pattern”—these patterns 
are not only causally, but also constitutively dependent on the scientists.
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practice through the production of knowable objects: the simple cell as an 

ideal pattern.21

The motivation for this shift is clear when we consider how neurophe-

nomena are different from the straightforward example of the melting point 

of lead. In the observation of complex, biological systems, there is no clear-

cut difference between signal and noise. There are innumerable processes in 

play, some of more interest to the scientist than others. The partitioning of 

signal and noise is therefore driven by theoretical expectations and by prag-

matics. In electrophysiology, some trial-to-trial variability is certainly due to 

experimentally introduced noise (i.e., instrument noise); but much is due to 

the endogenous variability of the system, such as behavioral and attentional 

context (Stringer et al. 2019, Musall, Kaufman, et al. 2019), and such modula-

tions occur even in anesthetized animals (Arieli et al. 1996). The important 

point is that this variability is not all “noise” from the point of view of the 

brain. Unlike in the case of melting lead, which can intuitively be depicted as 

a melting phenomenon separated in nature from background occurrences,22 

the specification in neurophysiology of what is the phenomenon—the process 

of significance standing out against a background of irrelevances—is always 

a matter of the researcher’s discernment. Out of countless, mostly uncharted 

occurrences, a neurophenomenon is honed and sculpted through the tools 

of experimental practice and data analysis. It should not be assumed to exist 

independently of those methods.

21.  I reiterate that haptic realism is not supposed to be an intermediate position 
between standard scientific realism and antirealism (aka “empiricism” or “instru-
mentalism”) (section 2.1.3  in chapter 2). Instead, it stands out against both kinds 
of views by emphasizing the interactive processes that bring about scientific knowl-
edge, explanation, and understanding. Against standard realism, this means that the 
imprint of the human scientist in shaping knowledge can never be discounted, as 
is required to bolster claims that the best science is an unfiltered representation of 
human-independent nature. Against standard antirealism, science can still be taken 
to offer representations of portions of nature (that go beyond data summaries), and 
which are constrained by the behavior of the target system. We must also keep in 
mind the message of chapter 1—namely, that each portion of nature is vastly more 
complicated than will be possible to depict in any scientific representation, hence 
the partiality and limitations of these representations.
22.  I do not mean to affirm that some version of these issues—to do with the prob
lem of isolating a “clean” phenomenon against background factors—do not arise in 
the investigation of physical phase transitions (see Chang 2004), but just that it is 
relatively easy to think that this is not the case, as per Bogen and Woodward (1988).
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To bring focus to the sense in which the simple cell is an ideal pattern, we 

can consider a question posed by Olshausen and Field (2006, 190), who ask, 

“Are these categories [simple and complex] real or a result of the way neurons 

were stimulated and the data analyzed?” As I see it, there is a false dichotomy 

in their holding that either the categories are real (preexisting in the wild) or 

not real and merely the result of experimental practice, in essence an artifact. 

My account enables us to see that indeed, the simple cell is a result of certain 

procedures, but it is not merely an artifact. The ideal pattern is not fictional. 

The simple cell is a creation, but not ex nihilo. The categories of simple and 

complex cells are suggested by things that neurons actually do (in the lab), 

with certain characteristics of their response profiles highlighted at the pro

cessing stage. More generally, we should think of ideal patterns as taking 

shape through a process of interaction between scientist, lab equipment, tar-

get system, data, and modeling. It must be appreciated that the simple cell 

was not the result of the scientists projecting their categories onto the inert 

substance of the brain, but rather the outcome of a certain agency on the 

part of the visual cortex, the neurons’ tendency to adapt themselves to their 

context.23 Without this adaptiveness, the simple—or rather, simplified—cell 

would not come about, for experimental constraints would not so readily 

lead to a reduction in complexity of neuronal activity.24

The regularization that comes with the generation of ideal patterns can 

be seen as foundational to the scientific study of objects that do not present 

themselves as already neatly packaged and classified. Lorraine Daston (2016) 

writes about the cloud atlases of nineteenth-century meteorology, in which 

the shape-shifting structures of clouds, whose forms blur continuously from 

one kind to another, were codified into the paradigmatic types of cumulus, 

23.  This point is comparable with some ideas from actor network theory. There is a 
focus on experimental interaction between scientist and target system, with agency 
acknowledged on both sides (Pickering 1995). Like Latour (1992), I seek to avoid both 
a pure constructivism (whereby the simple cell would be a fiction generated by the 
scientist) and a robust realism, whereby the simple cell would be an object that exists 
independently of scientific practice, with the aim of science being to generate accurate 
representations of it. See Nordmann (2006, 17–18) on the thread between Kantian 
epistemology and Latour’s account of experimentation.
24.  The idea that simple experimental conditions lead to simplified patterns of neu-
ral activity is a point supported by the recent theory of neural task complexity (Gao 
and Ganguli 2015), to be discussed at the end of this chapter.
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nimbus, and so on, through “description by omission.” The nimbus cloud is 

an ideal pattern, with the additional characteristic of the simple cell being 

that it is not only observed under a certain manner of abstraction, but it is 

experimentally shaped and observed. In an early report on retinal physiol-

ogy, Kuffler (1953, 61) had emphasized the “flexibility and fluidity of the 

discharge patterns,” and how the heterogeneity of responses was such that 

the cells defied imposition of a classification scheme.25 Hubel and Wiesel did 

not have such compunctions. By 1977, they had arrived at a neatly param

eterized picture of V1 neurons, where in an analogy with manufactured 

items—ready-to-wear suits that are identical except for differences along pre-

specified lines—cells are said to be fully describable in terms of their position 

along five axes of variation:

We may think of a cell in area 17 of the monkey as responding optimally when 

a number of stimulus variables are correctly specified. The cell may be described, 

then, by its degree of complexity,26 the x-y coordinates of the position of the recep-

tive field, the receptive field orientation, the ocular dominance, and the degree to 

which there is directional preference to movement. Such a list of specifications is 

analogous to the tag showing the price, sleeve length, percentage of wool, and so 

on, attached to a suit in a department store. (Hubel and Wiesel 1977, 11–12)

By Kuffler’s account, which did not abstract away from the heterogeneity 

of the population, each single neuron would be a bespoke outfit, unique and 

sui generis, though sharing some common features of general organization, 

such as center-surround antagonism.

5.1.3  Theoretical and Technological Sequalae

We will now examine the theoretical significance of the simple cell, consid-

ered as an ideal pattern. From the 1970s onward, a standard model of primary 

visual cortex evolved, and the conception of the simple cell as an essentially 

linear filter in a feedforward processing hierarchy was central to it (Carandini 

et al. 2005). The LN encoding model of simple cells (see footnote 10), in con-

junction with the energy model of complex cells (Adelson and Bergen 1985) 

dominated the field. So much has been written about primary visual cortex 

25.  Kuffler (1953, 62) writes of the cat retinal ganglion cell that “there seems to exist 
a very great variability between individual receptive fields and therefore a detailed 
classification cannot be made at present.”
26.  Namely, whether it is simple, complex, or hypercomplex.
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that I could not hope to cover a range of theoretical perspectives in any detail. 

Instead, I have selected one article by Horace Barlow as representative of the 

way that experimental and modeling work on the visual cortex fed into a 

theory of the neural basis of visual perception.27 With the simplicity of this 

neurophenomenon in place, a clear, intelligible account of the operation of 

the visual cortex was made possible. We will see that many reasonable criti-

cisms could be leveled against the picture of primary visual cortex suggested 

by research on simple and complex cells, but regardless of these flaws, it led to 

a significant technological innovation.

Barlow’s (1972) article “Single Units and Sensation: A Neuron Doctrine 

for Perceptual Psychology?” is a manifesto for methodological reduction-

ism, insisting on the adequacy of knowledge of parts in isolation for the 

understanding the whole. Its central proposal is that the single neuron is 

the elementary operational unit of the visual system, not any smaller-scale 

structures or larger populations of neurons.28 The elementary function of 

the visual neuron is, Barlow, contends, to detect a specific feature, and as 

Butts (2019, 465–496) notes, this notion of neurons as feature detectors is 

grounded in simplified linear models. Each level of the feedforward hierarchy 

contains neurons responsive to certain kinds of trigger features, with com-

plexity of features increasing as we move up the levels—spots for precortical 

cells, spatially located bars for simple cells, and involved objects like hands 

for neurons in the temporal cortex areas near the top of the hierarchy. It is in 

the inferotemporal cortex (IT) that the infamous “grandmother cell” might 

appear. The operation of the whole visual system is decipherable from knowl-

edge of what individual neurons respond to. Since Barlow takes it that cells 

are silent for all but their preferred stimulus, not showing signs of multifunc-

tionality, he is not bothered by antireductionist worries about the insuffi-

ciency of the single-neuron perspective (1972, 382).29 Thus, the methodology 

27.  See Movshon (2021) for a wider overview of the significance of Barlow’s theoreti-
cal work, including the notion of sparseness also employed in the 1972 article.
28.  There is, of course, a debt to the neuron doctrine of Ramon y Cajal (Shepherd 
1991).
29.  We should note here the connection between the supposition of unifunctionality 
and the archetypal notion of a mechanism, in which each component has one clearly 
specified role in the system. Fusi et al. (2016, 66) state this nicely: “The traditional 
view of brain function is that individual neurons and even whole brain areas are akin 
to gears in a clock. Each is thought to be highly specialized for specific functions.”
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of single-unit electrophysiology—the detailed study of one neuron at a time, 

without regard to the influence of cortical population activity—is vindicated.

This theory was compelling to many, but as Masland and Martin (2007: 

R578) put it, “an aggressive slice of Occam’s razor was required to make sense 

of the properties of cortical neurons.” They are referring in particular to the 

way that the theory had to posit homogenous groups of standard precortical 

RGC and then LGN cells feeding into the simple cells, whereas nonstandard 

cells are the majority in many animals, including the cat. They also point out 

that the simplifying assumptions of linearity, and distinct cell classes in the 

cortex, are ill matched to the findings of more detailed anatomical and physi-

ological examination. A yet-harsher attack on the theory came from Olshau-

sen and Field (2006), who make the case that the so-called standard model of 

V1, though claiming comprehensiveness, accounts for only 15 percent of the 

behavior of neurons in this area.30

Olshausen and Field (2006, 182) conclude that “for all practical purposes, 

we stand today at the edge of the same dark abyss as did Hubel and Wiesel 

forty years ago.” In saying this, they ignore some technological (i.e., practi-

cal) advances that were inspired by this research. In chapter 4, I described the 

research strategy of constructing artificial devices with similar functionality 

30.  See also Olshausen and Field (2005), which shares much of the same content as 
the 2006 publication, and is more widely cited. Olshauen and Field (2006) present five 
lines of criticism: (1) biased sample, (2) biased stimuli, (3) biased theories, (4) inter-
dependence and contextual effects, and (5) ecological deviance. Point (1) is the bias 
toward recording cells that are strongly visually responsive and easy to categorize. 
In point (2), they argue that use of artificial stimuli (see figure 1.1 of chapter 1 for 
examples) is justified only if V1 is basically a linear system because stimulation with a 
small set of such stimuli would then allow a complete characterization of the system’s 
response profile. But see Rust and Movshon (2005). Point (3) draws on the Mechler 
and Ringach (2002) result that the F1/F0 ratio creates a bimodal distribution from V1 
data. In point (4), regarding interdependence and contextual effects, Olshausen and 
Field note that feedforward input from the LGN is responsible for only 35 percent 
of the behavior of neurons in the “input” layer 4 of V1. The other 65 percent, they 
argue, must be due to intracortical connections, including input from neurons most 
responsive to other sensory modalities. In point (5), Olshausen and Field argue that 
ability to predict responses to natural stimuli is the key test for encoding models. As 
we will see in section 5.2, this view was shared widely, and its consequences for the 
field were significant. Lehky and Sejnowski (1988) is a much earlier criticism of the 
“neuron doctrine” assumption that the function of visual neurons can be determined 
by examination of their RF maps.
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to a neural system, using the artificial, more scrutable system to shed light on 

the neural one. This was, as it happened, the method that led to the first deep 

artificial neural network (ANN) models of vision. Here is Fukushima (1980, 

193), inventor of the “neocognitron”: “If we could make a neural network 

model which has the same capability for pattern recognition as a human 

being, it would give us a powerful clue to the understanding of the neural 

mechanism in the brain.”

His feedforward, hierarchical model took inspiration from Hubel and 

Wiesel’s work, as well as Barlow’s theories. It is the ancestor of the deep con-

volutional neural networks (DCNNs) that rose to prominence in the last few 

decades.31 The outstanding successes of DCNNs have been in machine vision 

tasks such as text, object, and face recognition. They contain artificial nodes 

performing the computations that the old theories attributed to neurons in 

V1 (Butts 2019, 462). Against attacks on the “standard model” of V1 from 

Olshausen and Field, others point to the achievements of this technology as 

vindication of the (strictly speaking) false assumption that the visual system 

is a feedforward processing hierarchy, lacking top-down (recurrent) input 

(Vintch, Movshon, and Simoncelli 2015, 14839).32 This brings to the surface 

important questions about the value of manifestly false theories.33

In particular, we should consider whether the classical theory—which is 

deemed false because it is severely oversimplified with respect to the ana-

tomical connections and physiological processes thought now to occur in 

the visual cortex—still provides any understanding of this brain area, espe-

cially as it operates in the wild. I have argued elsewhere that ideal patterns 

31.  See for instance, LeCun et  al. (1989) and Krizhevsky, Sutskever, and Hinton 
(2012); for review, Buckner (2019) and Lindsay (2020).
32.  In fact, it is a common view that as yet, the DCNN is the best model of the pri-
mate ventral stream, even though it contains these false assumptions (Lindsay 2020). 
From anatomical and physiological observation, it is well known that feedback con-
nections from the rest of the brain to the visual cortex are significant.
33.  I do not concur with the account of Wimsatt (2007, chapter 6), that false theories 
are a guide to truer ones, since this pulls us back toward a traditional realism that sets 
up complete, representational accuracy as the ultimate goal. Fruitfulness for empirical 
research is another recognized benefit of so-called false theories. Of the 1972 “Neuron 
Doctrine” article, Movshon (2021, 188) writes that “it is quintessential Horace, because 
even when ultimately proved wrong, his ideas provoked important experimental work 
that would not otherwise have been done. . . . ​The fact that Horace was not always 
correct is what made him a good—no, a great—theorist.”
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have a role to play in the generation of nonfactive understanding of compli-

cated systems.34 This is a kind of scientific understanding that does not rest 

on the acquisition of truths about the target system, in all its complexity, 

but instead on the presentation of a theory or model that is more of a cari-

cature, exaggerating some features to the point of misrepresentation and 

completely ignoring others. Such theories and models provide understand-

ing because they strike a compromise between the overwhelming complex-

ity of their target and the cognitive capacities of the investigator, limited 

in their ability to make sense of too many intricacies. Nonfactivists tend to 

emphasize the pragmatic dimension of this notion. A simplified model will 

not tell the whole story about V1, but it could be “true enough” (Elgin 2017) 

for certain tasks. Further, de Regt (2017) insists that scientific understand-

ing enables people to do certain things. The caricatured depiction of V1 

as containing linear simple cells feeding forward into translation-invariant 

complex cells enabled people to build artificial visual systems. I will argue 

in chapter 9 that there is a danger in making too much of this technological 

feat—the differences between artificial and organic visual systems are stark. 

Still, this achievement was possible because of the nonfactive understand-

ing afforded by the simplified picture of V1.

At the end of chapter 3, I argued that the reflex theory was ultimately 

unsuccessful, in that it failed to achieve its stated goal of behavioral engineer-

ing. We saw that its lack of technological success was due to its ecological 

invalidity. The record of the classical theory of V1 is more mixed. Like the 

reflex theory, it is highly simplified, perhaps simplistic, but it does have a sig-

nificant spin-off to its credit, the DCNN. In common with the reflex theory, 

it could not meet the challenge of ecological validity, and its failure to predict 

responses in naturalistic viewing conditions was a major reason why neuro-

scientists began to explore methods beyond the classical approach. 

Before moving to the next era of research, I would like to point out that my 

interpretation of the classic era stands against a common view of simplifying 

methods in experimentation and modeling, one that asserts that they facili-

tate production of effects outside the lab because they provide knowledge of 

stable “capacities” operating both in and out of controlled conditions (Cart-

wright 2009, discussed in Chakravartty 2017, 117). The key issue here is that 

34.  See Chirimuuta (2020c, 2023). Nonfactivist theories of scientific understanding in 
recent years have been defended by Elgin (2017), de Regt (2017), and Potochnik (2017).
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there are no grounds for asserting that the classical simple cell experiments 

revealed much about invariant capacities or causal relationships, given that 

the response profile changes so much under different circumstances (see sec-

tion 5.2). At most, one could simply posit that the cell has an invariant dispo-

sition, which is partially manifest in the classic experiments. But that would 

be an empty proposition, given that the partial manifestation does not reveal 

enough to be a basis for robust generalization to new conditions. Northcott 

(2022) makes a helpful distinction between “master-model” and “contex-

tual” strategies, where the former but not the latter strategy presupposes the 

stability of the relationships being modeled. Master-model strategies rely on 

the assumption that nature consists of stable relationships, perhaps remain-

ing hidden behind noise, whereas the contextual approach countenances the 

fragility and instability of the relations targeted in the model. My position is 

that a certain instability needs to be accepted regarding neuronal behavior—

hidden invariance is an unwarranted posit.

5.2  Beyond the Classical Approach

Although many were unmoved by Olshausen and Field’s all-out attack on 

the classical approach, the sentiment that the standard V1 model needed 

to be tested against natural stimuli seems to have been widespread already 

around the turn of the century (e.g., Carandini et al. 2005, 10577). A number 

of experiments recorded from V1 of primates and other mammals, some-

times awake, and mapped neuronal responses to natural images, comparing 

them with those obtained under artificial stimulus conditions (e.g., David, 

Vinje, and Gallant 2004, Smyth et al. 2003). This opened a Pandora’s box 

of nonlinearities—contextual effects not seen previously.35 Still, one can ask 

why prediction of activity in the wild was so widely accepted as the gold 

standard for the testing of encoding models. To compare, the inability of 

classical mechanics to predict the falling trajectory of a paper note dropped 

35.  This happens because a natural image abounds with features different from the 
preferred stimulus of any one neuron. The activations of the neighboring cortical 
neurons that are responsive to those other features will modulate the activity of the 
recorded neuron, hence there are contextual effects that can be observed just with 
slightly more complicated artificial stimuli, such as two sinusoidal gratings superposed 
at different angles (Bonds 1989).
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from a high building into a city square is not taken to be disconfirmatory of 

those laws, but only to indicate a limitation in their domain of application 

(Cartwright 1999, 27). Perhaps it is because, unlike those physical laws, the 

encoding model does produce a prediction, but one found to be inaccurate; 

or it may be because an ultimate goal of neuroscientific research is transla-

tional medicine. Theories must therefore be applicable in the wild if they are 

to form the basis of therapeutic interventions in uncontrolled conditions.

There are some curious similarities between the criticisms leveled against 

the reflex theory and the reasons given for the turn against the classical 

approach to research on V1 and other brain areas. The themes that recur are 

the rejection of the localizationist assumption that brain areas are strictly 

specialized (e.g., for sensory or motor functions), worries about the artificial-

ity of laboratory-induced simplifications, and assertions of the importance 

of understanding animal behavior as it occurs in the wild—a revalidation 

of the science of ethology.36 These three notes can be seen in the following 

passage from Sonkusare, Breakspear, and Guo (2019, 699), reviewing func-

tional magnetic resonance imaging (fMRI) research on human perception 

and cognition:

Cognitive neuroscience has traditionally relied upon relatively simple parametric 

tasks using abstract stimuli, delivered with strictly controlled and sparse tempo-

ral order. Such designs tightly control the variables involved and isolate targeted 

behavioural or cognitive constructs as much as possible, classically driven by the 

“localisationist” objective of assigning specific cognitive processes to discrete brain 

regions. A suite of carefully designed parametric tasks has been the mainstay of 

cognitive neuroscience research and enabled fundamental insights into our under- 

standing of brain–behaviour relationships. However, the ecological validity of these 

abstract, laboratory-style experiments is debatable, as in many ways they do not 

resemble the complexity and dynamics of stimuli and behaviours in real-life.

In the remainder of this section, we will examine the direction that has 

been followed on the basis of such concerns. The interesting thing is that the 

new trajectory of research does not follow a straightforward pattern whereby 

a rough, oversimplified model (the first approximation) is replaced by ones 

36.  Olshausen and Field (2006, 206) say: “Reductionism does have its place, but it 
needs to be motivated by functionally and ecologically relevant questions, similar to 
the European tradition in ethology.”

See also Musall, Urai, et al. (2019), Parker et al. (2020, 581), and Nastase, Gold-
stein, and Hasson (2020).
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that improve accuracy by adding correcting factors to the original (the sec-

ond and third approximations). Although this approach was tried in various 

ways (e.g., Heeger 1992), what we see now is a more wholesale rejection of 

the classical approach, with a complete overhaul of experimental and mod-

eling techniques. And yet, as the story will go, even this has not led to an 

account of V1 that is free of the intermediary of artifice. Scientists are finding 

new ways to strip down the complexity of the cortex through the study of 

artificial visual systems in silico.

5.2.1  The Big Data, Ethological Turn

I have noted three important ways that simplification was brought about 

in classic V1 experiments: behavioral restraint, stimulus constraint, and use 

of single-unit recording. The practice I call the “big data, ethological turn” 

departs from each of these methodologies to a fairly extreme degree. From 

the turn of the century until now, research has been conducted that takes 

new directions with respect to scale of recording, behavior and stimulus 

conditions; but that is not to say that classic paradigms have ceased to be 

used altogether. We will now review these trends.

Scale of Recording37  The fifty years between 1960 and 2010 saw expo-

nential growth in the number of neurons that could be simultaneously 

recorded (Stevenson and Kording 2011). The first studies of Hubel and Wie-

sel employed a single electrode, while multielectrode recordings starting in 

the 1970s increased capacity to tens of neurons at a time. By 2010, use of 

the 100-electrode Utah array, invented in the early 1990s (Jones, Campbell, 

and Normann 1992), meant that it was commonplace for publications to 

report the activity of over 100 neurons at a time. In the last decade, this 

trend toward larger-scale recordings has only accelerated. As reported by 

Steinmetz et al. (2018), with a useful review of prior innovations, the Neu-

ropixels recording probe allows for about 1,000 recording sites per device. 

Sahasrabuddhe et al. (2021) have recently reported the development of the 

Argo microelectrode array, which offers simultaneous recording from over 

65,000 channels. Two-photon calcium imaging is a fundamentally differ

ent strategy for the measurement of neural activity, which came into use 

37.  This section is by no means an exhaustive review of new recording methods. The 
articles cited here contain much information about additional techniques that I do 
not mention.
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at the turn of the century (Smetters, Majewska, and Yuste 1999; Mao et al. 

2001). Instead of directly recording the voltage changes that occur as neu-

rons fire action potentials, it detects the influx of calcium ions occurring 

when neurons are activated and signaling. Stosiek et al. (2003) demonstrated 

that calcium imaging could be used in vivo to monitor the activity of a net-

work of 100s of neurons in the mouse brain. By the publication of Stringer 

et al.’s (2019) study of mouse visual cortex, calcium imaging had scaled up to 

encompass the observation of around 10,000 neurons. To state the obvious, 

this is an immense increase in the amount of data that can be generated in 

any one physiological experiment.

The Allen Institute for Brain Science, a research institute launched by a 

donation from Microsoft cofounder Paul G. Allen, is one of the institutions 

in which large-scale recording of the visual cortex is now being conducted. 

For example, de Vries et al. (2020) published a data set resulting from a Tay-

lorist restructuring of the neurophysiological experiment in which 59,610 

neurons from six visual areas in 243 mice were observed using two-photon 

calcium imaging. The article lists seventy-two authors. Their experimental 

“pipeline” was designed to ensure that data would be standardized across 

experiments, and it is said to be motivated by the arguments of Olshausen 

and Field (2006), whom they cite, regarding bias in the old approach. The 

virtue of their nonselective survey of tens of thousands of neurons, they 

indicate, is that it reduces these sources of bias.38

The development of these methods is perhaps a case of innovation occur-

ring by its own momentum, as well as through targeted allocation of resources 

form funding agencies.39 Still, the theoretical motivations and ramifications 

are highly relevant to our discussion. We find protagonists in the invention of 

38.  Further, de Vries et al. (2020, 149) write that earlier research “may have failed to 
capture the variability of responses, the breadth of features that will elicit a neural 
response, and the breadth of features that do not elicit a response. This results in sys-
tematic bias in the measurement of neurons and a confirmation bias regarding model 
assumptions.”
39.  Innovation in this area has been viewed by funding agencies as the path for pro
gress in neuroscience toward remedies for prevalent brain disorders. Since 2014, the 
federally supported Brain Research through Advancing Innovative Neurotechnologies 
(BRAIN) Initiative in the US has made available millions of dollars for the development 
of new neural recording techniques, among other tools for experimental neuroscience. 
See https://braininitiative​.nih​.gov.
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large-scale recording methods rejecting Barlow’s (1972) theory of the single-

neuron code, and proposing instead that it is populations of neurons that 

encode information about the world. In a paper that helped prompt the 

BRAIN Initiative by the National Institutes of Health (see footnote 39), the 

authors criticize the old methods of recording one or a handful of neurons at a 

time, on the grounds that the neuron doctrine is likely to be false: “It is proba-

ble that neuronal ensembles operate at a multineuronal level of organization, 

one that will be invisible from single neuron recordings, just as it would be 

pointless to view an HDTV program by looking just at one or a few pixels on 

a screen” (Alivisatos et al. 2012, 970).40

Fusi, Miller, and Rigotti (2016) explain that in a population code using 

nonlinear “mixed-selectivity” neurons, the response of any one neuron will 

be context dependent, and hence uninterpretable without knowledge of 

the activity of its peers. This, they say, is consistent with “a recent update 

to the neuron doctrine notion, that ensembles, not individual neurons, are 

the functional unit of the nervous system” (Fusi et al. 2016, 37). Saxena and 

Cunningham (2019, 109) similarly draw the connection between the avail-

ability of large-scale recording and the “rapidly growing trend in the field 

towards the neural population doctrine.”

We have seen that Barlow’s neuron doctrine came with reductionist 

assumptions about the adequacy of knowledge of the parts of the system 

(single neurons) as building blocks for the understanding the whole. It should 

not surprise us, therefore, that discussion of population-based alternatives 

to the neuron doctrine often invokes emergence, the old foe of reduction. 

Saxena and Cunningham (2019, 105) assert that “decoding accuracy”—the 

ability to read off the “meaning” of a neural code—“is more than the sum 

of its parts.” The article by Alivisatos et al. (2012) begins with a quotation 

from physicist P. W. Anderson’s (1972) emergentist manifesto “More Is Dif

ferent.” Helpfully, they state what they mean by the claim that neural cir

cuit function is emergent—that it “could arise from complex interactions 

40.  Cf. Yuste (2015, 488–489) and Yuste and Church (2014). If Barlow’s (1972) neu-
ron doctrine were true, the activation of any one neuron by itself would tell a story, 
so to speak, being selective for a particular kind of feature in the world. Fusi et al. 
(2016) note that the classical picture of cells being highly selective to one kind of 
stimulus is more tenable in visual and inferotemporal cortex (ventral visual stream) 
than in other parts of the brain, such as prefrontal and parietal cortex, where mixed 
selectivity (i.e., multitasking) appears to be the norm.
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among constituents” (970). To elaborate on this, they employ the language 

of dynamical systems theory (DST), saying that “dynamical attractors” are 

examples of emergent functional states.41 Interestingly, these neuroscientists’ 

acceptance of emergence does not lead to critical reflection on the practice of 

observing neurons to understand the mind, but it is used to justify the project 

of recording from more and more neurons. In contrast, a more thoroughgo-

ing emergentism would entertain the thought that the whole nervous sys-

tem, not the circumscribed population, is the true functional unit, perhaps 

removing the motivation for any monitoring of individual neuronal activity; 

indeed, it is hard for a consistent emergentism to stop at the brain and avoid 

the conclusion that the whole organism, and its behavior in context, is the 

level at which mental life must be studied—an end point in which psychol

ogy would reassert itself as the preeminent science of cognition.42

Behavior  In the classical experiments, the modulation of neural responses by 

the animal’s performance of different behaviors—such as orienting or reach-

ing toward a sensory stimulus—was eliminated through general anesthesia. 

As mentioned previously, Hubel (1959) reported no qualitative differences 

between the visual cortical activity of an anesthetized and an awake cat, just 

a generalized dampening of activity. This reassuring finding did not suppress 

all worries that the response profiles of these neurons could not be compre-

hensively charted unless the animal was awake. In the early 2000s, there was 

a trend toward V1 electrophysiology to be performed on “awake behaving” 

primates—that is, ones with head restraint and behavioral incentives to fix-

ate their eyes on targets imposed by the experimenter. This was not without 

worry that the experimenter would lose knowledge of where the animal was 

looking, and hence what the visual stimulus actually was on any given trial. 

Simultaneous eye tracking was therefore the norm in these experiments.

41.  Concepts of nonlinear DST have been employed in numerous recent studies (see 
chapter 7).
42.  This is indeed a point made by a different group of neuroscientists: “The phenom-
enon at issue here, when making a case for recording from populations of neurons or 
characterizing whole networks, is emergence—neurons in their aggregate organization 
cause effects that are not apparent in any single neuron. Following this logic, however, 
leads to the conclusion that behavior itself is emergent from aggregated neural cir
cuits and therefore should also be studied in its own right” (Krakauer et al. 2017, 484; 
emphasis in original).
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It is now commonplace for experiments on sensory physiology in rodents 

to employ “ethological paradigms” in which the animal is free to move, and 

so perform the behaviors that would naturally be elicited by the stimuli 

encountered. One review of research in this vein begins with a critical assess-

ment of the localizationist and reductionist framework assumed in earlier 

research. Parker et al. (2020, 581) describe how these assumptions supported 

the feedforward, hierarchical model of sensory processing which is now 

deemed “an over-simplification, since it overlooks important components 

such as top-down feedback and various forms of contextual modulation.” 

Instead, experiments in which animals are behaviorally less constrained 

reveals multitasking in V1 neurons that was not previously observed. For 

example, movement-related modulation of activity in mouse visual cor-

tex has been reported by various authors (Niell and Stryker 2010; Musall, 

Kaufman, et al. 2019; Stringer et al. 2019). Fiser et al. (2016) and Saleem 

et al. (2018) report V1 activity, in a subset of neurons, reminiscent of place 

cells in the hippocampus, where the level of response to a given stimulus 

depends on its location on a track. A note of caution is that all these experi-

ments were performed on mice. It could be that there is greater intercon-

nectivity between regions of the cortex in rodents than in primates, which 

would mean that these phenomena would not be so readily observed in pri-

mate visual cortex.

The trend toward richer behaviors interacts importantly with that of 

larger-scale measurement. With the acquisition of population data sets, the 

dimensionality of neuronal responses has been used as a metric for com-

plexity of brain activity. For example, a raw data set recorded from N=240 

neurons will have 240 dimensions. However, the responses of neurons 

are often correlated with one another, which makes possible the use of 

dimensionality-reduction techniques such as principal component analysis 

(PCA) (Cunningham and Yu 2014). A consistent finding of the analysis of 

data sets of populations of about 100 neurons has been that the dimension-

ality reduces to around 10, one order of magnitude lower, indicating that 

the recorded brain activity is far less complex than might be expected. This 

observation is the starting point for the theory of neuronal task complexity 

(NTC). Gao et al. (2017) propose that the consistent findings of low dimen-

sionality are not due to the inherent simplicity of these brain areas, but 

rather to the simplicity of the tasks being performed when the data were 
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collected.43 Simple tasks have a small number of behavioral parameters, and 

this puts a bound on the dimensionality of the neural network dynamics, 

so Gao and Ganguli (2015, 149) argue. Although the NTC metric is not 

applicable to single neuron data sets, the general point is consistent with 

the lessons of section  5.1—namely, that the design of classic V1 experi-

ments made the cortical responses simpler than they otherwise would have 

been. Conversely, NTC is expected to increase for data sets that use richer 

behavioral tasks (Whiteway and Butts 2019, 91). While this means that 

the more complex data sets will be harder to analyze and interpret, it is a 

mountain that will have to be climbed if researchers’ understanding of the 

brain is to be translatable to applications in the wild.44

Stimuli  It was mentioned at the start of section 5.2 that failure to predict 

responses to natural images was probably the main strike against the clas-

sic encoding models of V1 neurons. I will now discuss some of the find-

ings that came with the trend of using richer stimuli—both natural images 

and artificial stimuli.45 The classical RF was defined only by the area of the 

visual field within which stimulation could achieve an excitatory response, 

consistent with experiments in which simple stimuli (e.g., a grating at one 

orientation) were presented, and these were small enough not to expand 

beyond the confines of the area to which the cell was responsive. How-

ever, it had been observed since the publications of Blakemore and Tobin 

(1972) and Maffei and Fiorentini (1976) that the presence of a contrasting 

stimulus beyond the classical RF would modulate a cell’s responses, some-

times increasing but mostly decreasing the cell’s responsivity to the stimu-

lus placed within its classical RF. Albright and Stoner (2002) review a range 

of such contextual effects, thought to be driven by intracortical input, and 

discuss their role in the perception of forms and contours.

43.  More specifically, the NTC theory states that “the dimensionality of neural pop-
ulations dynamics has an upper bound defined by the number of task parameters 
and the smoothness of neural trajectories across those parameters” (Musall, Urai, 
et al. 2019, 230), where the number of task parameters indicates the complexity of 
the task.
44.  For example, on the development of brain-computer interface (BCI) technolo-
gies to aid patients with spinal cord injuries, Laiwalla and Nurmikko (2019, 234) 
remark that NTC is expected to increase “as we move from the realm of highly con-
trolled, experimental BCIs to more naturalistic, deployable systems.”
45.  These are discussed in more detail in Chirimuuta and Gold (2009).
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A feature of the classic theory of visual cortex was that neurons had fixed 

response properties, except for plasticity in early life during “critical periods” 

of the development of the visual systems (see Hubel and Wiesel 1977, 46–50). 

However, it turned out that receptive fields were somewhat mutable, with 

the extent of summation fields dependent on stimulus contrast (Kapadia, 

Westheimer, and Gilbert 1999), among other findings (e.g., Cavanaugh, Bair, 

and Movshon 2002). Recent history of stimulation with natural images, as 

opposed to artificial ones, was found to cause subtle changes in the response 

profiles of neurons, requiring different models to fit their responses (David, 

Vinje, and Gallant 2004).

Given the failings of the mathematically simple LN models, much work 

has gone into the development of alternatives. More complex mathematical 

tools are needed to model more complex neural responses, and ANN models 

are now the state of the art for predicting visual neurons’ responses to natural 

stimuli (e.g., Cadena et al. 2019; Yamins and DiCarlo 2016; McIntosh et al. 

2016). Use of these machine learning techniques has the drawback that the 

resulting models are less intelligible than the earlier ones—they do not offer a 

transparent theory of the computations performed by these neurons, mean-

ing that the selectivity of the artificial neurons is “inscrutable” Butts (2019, 

463).46

A further move toward naturalistic stimulus regimes comes with the prac-

tice not of presenting an image to an animal on a screen, but in allowing an 

animal to freely explore its surroundings. Of course, this immediately brings 

up the problem of the experimenter not knowing what the stimulus actually 

is (Parker et al. 2020, 590). This difficulty, however, can be overcome through 

the use of sensors such as head-mounted cameras that record all that the 

animal sees. Again, we should note that the break with the artifice of classic 

sensory physiology has been made possible only through the invention of 

highly sophisticated technologies (see Parker et al. 2020, figure 3A).

5.2.2  Artifice, Old and New

We have seen that there has been a trend away from what was artificial in 

classic V1 physiology, a shift directly related to concerns about the local-

izationist and reductionist assumptions of that account and the biases 

46.  This point is argued at length in Chirimuuta (2020c) and will also be the topic 
of section 8.3 in chapter 8.
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introduced experimentally. Still, a question looms over the new approach—

namely, whether it can yield intelligible data sets and models. Frégnac (2017, 

471) worries that the industrialization of neuroscientific methods creates a 

culture in which scientists are pressured “to use mouse-specific state-of-the-

art techniques, irrespective of their adequacy,” and that “wishful thinking 

has replaced the conceptual drive behind experiments, as if using the fan-

ciest tools and exploiting the power of numbers could bring about some 

epiphany.”47

To draw this long chapter to a close, I will point out that the newest 

developments have displaced rather than resolved the problems of artifice 

and brain complexity. First, the neuroethological paradigms, as much as 

they might evoke wildlife in untrammeled nature, depend on technologies 

so sophisticated that they could be science fiction. We saw that cameras and 

other sensors are required to keep track of the stimulus during free move-

ment, and large-scale population recording is needed to sample broadly 

and gather the activity of cells with a range of response profiles, not just the 

visually dependent ones. When sensory responses are analyzed in tandem 

with movements, the experimenter also needs tools to keep track of the 

animal’s behavior. This is done at scale by taking video recordings of the 

experiment and then using machine learning to classify the movements 

into behavioral motifs (Juavinett, Erlich, and Churchland 2018, 47). Such 

experiments generate more complex neural data sets, and these demand 

the full statistical firepower of modern machine learning for modeling and 

analysis. For experiments investigating sensorimotor activity and decision 

making in freely behaving animals, researchers admit that the data are too 

hard to theorize without the intermediary of an ANN as an “artificial model 

organism” (Musall, Urai, et al. 2019, 234).

The irony here is that the big data, neuroethological paradigms were a 

turn away from the artifice inherent in the classic experiments, and yet arti-

fice has returned in a different guise. To get the correct picture of sensory 

cortex, it was deemed necessary to study the animal performing natural-

istic behaviors—perceiving its environment, locating ecologically relevant 

objects, and making decisions about them. However, the brain in the wild 

is too complicated to be directly understood. When an ANN is used as an 

47.  See Churchland and Sejnowski (2016) for a more positive take on these 
developments.
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artificial model organism, this introduces a new way for the neuroscientist 

to avoid studying brain activity in its full complexity, by targeting a simpli-

fied system in its place, for the purposes of theory and explanation.

Admittedly, reverse-engineering ANNs to understand how they perform 

simulated tasks is hard,48 but the ANN is still less complex than an actual 

brain. As Musall, Urai, et al. (2019: figure 2) depict, an ANN is a gray box in 

comparison with the black box of the brain. Even if it is somewhat inscru-

table, at least the full wiring diagram and connectivity matrix of the ANN 

are known. These words from Haesemeyer, Schier, and Engert (2019, 1130) 

might remind us of the quotation from Jean-Pierre Dupuy that opens this 

chapter: “The principles underlying the operation of ANNs on the other hand 

are likely easier to dissect because they are made by man and because activ-

ity states in such networks can be readily queried.” Still, Musall, Urai, et al. 

(2019, 235) admit that there are “profound conceptual differences” between 

the ANN and the brain—some of which will be examined in part III of this 

book. For this reason, it is helpful to follow Hardalupas (2021, chapter 4) in 

treating ANNs serving the role of surrogate brains as artificial Krogh organisms. 

A Krogh organism is useful because of peculiar features that make it uniquely 

accessible for certain investigations, not because it is ideally similar to some 

other target of research (Green, Dietrich, et al. 2018).

5.3  Conclusion: What I Have Not Made, I Do Not Understand

The departing words of Richard Feynman—“What I cannot create, I do not 

understand”—are often used as a rallying cry for workers at the intersection 

of neuroscience and AI.49 Yet the lesson from this chapter is that this slogan 

misrepresents what occurs in computational neuroscience. It is better to 

say, “What I have not made, I do not understand.” As far as we can tell from 

the practices of neuroscience, past and present, scientists’ understanding of 

the brain relies on there being an artificial stand-in—a simplified cell or an 

artificial model organism—between themselves and their original object of 

48.  For instance, see Sussillo and Barak (2013) and section 8.3 in chapter 8.
49.  For instance, see Arkhipov et al. (2018, 1), Hasson, Nastase, and Goldstein (2020, 
423), and Einevoll et al. (2019, 739). They take it in the sense of re-creation of cogni-
tion being the test of the scientist’s understanding of it. See section 8.2, n4, on the 
various meanings of Feynman’s saying.
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investigation. Moreover, technological success has no inherent connection 

with understanding the brain in its native complexity. The model of visual 

cortex that led to the creation of DCNNs was a highly abstract and idealized 

version of the perceptual process. Despite containing false assumptions, it 

made possible today’s machine vision technologies. And all of this is not to 

say that artificial intermediaries like ANN models are perfectly understand-

able. They clearly are not, and the significance of that fact will be discussed 

in chapter 8. Before then, in the next chapter, we will examine one of the 

conceptual practices that the standard model of V1 helped foster: the treat-

ment of sensory neurons as encoding features of the environment and pro-

ducing representations of the item in the world that best stimulates them. 
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Theories in cognitive neuroscience often posit representations in the brain, 

and while the appeal to intentional notions is widespread, their status is 

controversial. This chapter offers a new interpretation of the theory and the 

practice. I argue that intentional posits are brought in because they allow a 

workable model or framework for describing relationships between neural 

activity and extracranial occurrences in which distal relationships, but not 

proximal causal interactions, have explanatory relevance. This stands in con-

trast to mechanistic frameworks, which do not license the black-boxing of 

proximal causes. The positing of neural representations is a powerful way to 

abstract away from the details of very complex processes that link patterns of 

neural activity to their distal triggers or effects in the world beyond the brain. 

I situate my proposal with respect to current realist and antirealist accounts 

of neural representations and argue for the advantages of my metaphysically 

neutral proposal over these alternatives.

6.1  The Quandary of Neural Representations

Talk of neural representations is in the common jargon of cognitive neuro-

science. Over the last few decades of research, cells in various areas of the 

primate visual system have been said to represent edges (Marr 1982), tex-

tures (Freeman et al. 2013), and faces (Tong et al. 2000); population activity 

in primary motor cortex has been claimed to provide a representation of 

intended movements (Georgopoulos, Schwartz, and Kettner 1986); certain 

hippocampal cells have been characterized as representing places in an ani-

mal’s surroundings (O’Keefe and Conway 1978). Philosophical discussion of 

this practice has concerned itself with the matter of whether these so-called 

6  Why “Neural Representations”?
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neural representations meet the conditions considered necessary for some-

thing being a representation, such as semantic determinacy and norma-

tivity.1 In other words, debate has settled around the question of whether 

neural representations, so-called, really are genuine representations.

The explanatory and predictive success of cognitive neuroscience has 

pushed some toward the positive answer (e.g., Shea 2018; Colombo 2014). 

The explanatory value of the term “neural representation” has been taken 

as evidence that there are neural representations. Still, there are two impor

tant worries about the positive answer. One may query whether the talk is 

justified since so-called neural representations arguably only meet the crite-

ria for less demanding causal but nonintentional2 notions. Some instances 

of the relationship between an external factor and neuronal response may 

even fall below the benchmarks for causality, perhaps no more than covari-

ation. Furthermore, ontological commitment to neural representations sets 

up the need for a naturalistic theory of intentional content, and there is no 

generally accepted account (e.g., Sprevak 2013; Egan 2020).

Likewise, problems arise if one settles for a negative answer. The move 

is revisionary, finding fault with a common scientific form of expression. 

Moreover, those who deny the existence of neural representations need to 

provide an alternative account of the persistence of this scientific practice. 

I will say more about the current philosophical accounts in section  6.3. 

For now, we should note that the controversy over representation-talk also 

afflicts the neuroscientific community, with publications appearing both in 

defense and rebuke of intentional descriptions of neural processes (Brette 

2019; Kriegeskorte and Diedrichsen 2019).

My account of representation-talk picks up the thread from chapter  4, 

where it was argued that the reference to neural systems as undergoing com-

putations should be taken as invoking a rough analogy rather than being lit-

erally descriptive. The positing of neural representations is of course related 

to the computational theory of cognition, where it is asserted that animals’ 

mental capacities are the outcome of a series of computations over represen

tations, implemented in neural tissue (Sprevak and Colombo 2019). Here, I 

1.  See Egan (2019) on these and other conditions.
2.  “Intentional” is the philosopher’s term for “representational,” and it is sometimes 
used synonymously with “semantic.” An “intentional system” is one that employs 
representations—some physical tokens that have meaningful (i.e., semantic) content.
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contend that the models positing neural representations, as well as related 

intentional notions such as neural codes, invoke an analogy with artifacts 

including maps, scripts, pictures, and coding systems that are made by people 

to represent various things. The talk of neural representations also invokes 

an analogy between neural activity and the intelligent behavior of whole 

animals—its robust sensitivity to distal goals over proximal disturbances. What 

both of these analogy sources have in common—the intentional relationship 

between a sign and its object, the intending behavior of a creature—is their 

indifference to intermediary factors: the statement that some item is a sign for 

something can be upheld regardless of the causal relationship between these 

two; the same is true for the account of a behavior as being directed at a goal. 

My argument will be that this bracketing, or black-boxing, of intermediary 

causal factors is what is most useful to the cognitive neuroscientist whose 

task is to explain the relationship between neural activity and distal objects, 

states and events in the extracranial world.3 In my exposition, I will focus on 

the analogy with representational artifacts or “public representations.” The 

interpretation of representational notions in cognitive science as grounded in 

an analogy with these has precedent in the accounts of Godfrey-Smith (2004) 

and Coelho Mollo (2021), although my account is more indebted to the ideas 

of Mary Hesse.

My account has three basic aims. The first is to give a charitable interpreta-

tion of representation-talk in neuroscience. I will be nonrevisionary, accept-

ing the positing of neural representations and leaving representation-talk “as 

it is.” This aim will cover even the hard cases to defend against elimination, 

showing why representation-talk can be endorsed even when neural activity 

is involved in cognitive performances not deemed “representation-hungry.”4 

Thus, I will focus my attention on the “receptor notion” from sensory neuro-

science, whereby representations are posited just when “some sort of internal 

state reliably responds to, is caused by, or in some way nomically depends 

3.  To be concise, I mostly just talk of distal objects in what follows; this should be 
read as including states of affairs and events as well.
4.  These are cases where either the task “involves reasoning about absent, non-existent, 
or counterfactual states of affairs” or “requires the agent to be selectively sensitive to 
parameters whose ambient physical manifestations are complex and unruly” (Clark 
and Toribio 1994, 419). Perception and motor control are not generally considered 
representation-hungry because they involve responses to or activity directed toward 
objects that are present in the surroundings.
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upon some external condition” (Ramsey 2007, 123)5—the notion that 

Ramsey most strongly criticizes as untenable.6 My interpretative task may 

be contrasted with the more constructive task that I am not undertaking—

that of creating a new definition of “neural representation” to be offered for 

theoretical employment.

In order for charity not to be quietism for sake of it, I need to satisfy a 

second aim, which is to account for the epistemic benefit of positing neural 

representations. Much of the time spent in section 6.2 will be on this point. 

My third aim is to remain neutral on the metaphysics of representations, 

intentionality, content, and causation. The third aim of metaphysical neutral-

ity is actually driven by the first aim of charity. I want to avoid making the 

epistemological justification of this scientific practice contingent on the buy-

in to a particular metaphysics of representation, such as a naturalized theory 

of content. A charitable interpretation is one that does not make the validity 

of the scientific practice hostage to neuroscientists and philosophers having 

a correct metaphysics of intentionality or causality, since even just having a 

consensus account is a remote goal, given the level of contestation over this 

matter. I will now set out my preferred way to interpret neural representation-

talk, and then, in section 6.3, it will be compared with rival accounts. We will 

see that the biggest point of difference comes from my insistence on meta-

physical neutrality. Finally, section 6.4 considers the upshot of these com-

parisons, especially in relation to the mainstream naturalism assumed by rival 

accounts.

6.2  Neural Representations and Simplification

In keeping with the theme of this book, my interpretation of representation-

talk in neuroscience is centered on the claim that what we have here is 

5.  Cf. Rule, O’Leary, and Harvey (2019, 141): “We take ‘representations’ to mean neu-
ral activity that is correlated with task-related stimuli, actions, and cognitive variables.”
6.  See also Krakauer (2021) and Barack and Krakauer (2021) for reiteration of these 
complaints against the receptor notion. In what follows, I argue that Ramsey and 
Krakauer overlook the utility of the receptor notion and exaggerate the suitability of 
ordinary causal explanation in sensory neuroscience. I do not disagree with Krakauer 
that more stringent notions of representation are called for in other branches of 
cognitive neuroscience, where planning and reasoning are under investigation. See 
Behrens et al. (2018) on such cases, in relation to the idea of the “cognitive map.”
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a simplifying strategy.7 In case this claim seems puzzling, I will go over 

some preliminaries, making some very general observations about scientific 

methodology.

6.2.1  Proximality as a Research Strategy

A tried, tested, and intuitive methodological strategy in science is to seek local 

causal explanations. It is a policy associated with the mechanistic philoso-

phies of Descartes and Leibniz, which held that nature was intelligible to the 

extent that observable physical phenomena could be put down to the pushes 

and pulls of tiny parts, in contact with one another when they interact–such 

pushes and pulls being the epitome of efficient causes. By the same token, it 

is a view that rejects the possibility of action at a distance and for that reason, 

followers of Descartes, as well as Leibniz himself, would not accept Newton’s 

theory of gravity.8 I will call this outlook a proximality-seeking one. When an 

apparently remote cause A is known to affect B, the strategy is to discover all 

the links in the chain of efficient causes between A and B so the effect of A on 

B can be understood as an unbroken series of actions by contact.

It is a further commitment of this approach that more spatiotemporally 

remote causal factors are “screened off” by the more proximal ones: if A acts 

on B via an intermediary a, closer spatiotemporally to B than A is, then A’s 

effect on B can in principle be fully potentiated or overridden by alterations 

made to a. Indeed, the intuition at play in this picture of causal-mechanical 

systems is that influence scales with proximity: the more remote a cause is 

from its effect, the more ways there are for the causal chain to be broken, 

and the less likely it is to bring about its effect, whereas the most proximate 

cause (if determinate) is guaranteed to be influential.

In Forces and Fields, Hesse writes that both the doctrine of action at a dis-

tance and its antithesis, the continuous action view, have scientific regulative 

principles associated with them. The regulative principle associated with the 

continuous action view is what I call the proximality principle. Hesse (1962, 

291) articulates this principle as the maxim to “always look for continuously 

7.  Perhaps this oversimplifies the conceptual territory of representation terms in 
neuroscience. As I warned in chapter 1, this study of abstraction in neuroscience is 
itself an abstraction.
8.  See Hesse (1955, 1962), Dear (2006, chapter 1), and de Regt (2017, chapter 5) on chang-
ing attitudes toward the intelligibility of action at a distance in the history of physics.
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acting causes.” Hesse goes on to assess the heuristic value of the principle, as 

due to its recommendation to the scientist to seek out explanations of ever 

more finely defined phenomena:

It looks as though the second directive [to seek continuously acting causes] will 

encourage the construction of more fruitful models, because models conforming to 

it will have to contain descriptions of “interphenomena” as well as “phenomena,” 

and in general . . . ​, it is eventually possible to devise further experiments to detect 

the interphenomena predicted. Continuous action therefore appears to be more 

powerful as a predictive model, and to make more claims upon the facts. (1962, 291)

But she concludes that this principle does not have overarching superi-

ority over the one allowing action to take place at a distance (1962, 292).

Mechanistic modeling in biology today conducts itself under this guiding 

picture of nature as an unbroken chain of local causal interactions or a nested 

set of densely interacting mechanisms. The proximality principle shows itself 

in microbiological research that determines the causal processes occurring in 

living systems to ever-greater standards of precision and detail. Craver and 

Darden (2013) spell out the operating principles of this kind of mechanistic 

research and note that the prolonged presence of black boxes in a model is 

a bad thing—a “vice of boxology.” We should think of these black boxes as 

structures in which a nonproximal causal relationship between A and B is 

noted, but with no detail of how this relationship is mediated. At best, black 

boxes in a model are pointers for future research to fill in the gaps in infor-

mation. At worst, they are signs of superficiality and incompleteness, which 

are two of the three “classes of failure” for models or mechanism schemata. 

Craver and Darden describe the “vice of boxology” by saying that it is

the vice of operating with incomplete schemas for which one cannot pass the 

“And how does that work?” test. But a goal of science is to push beyond the levels 

of understanding of everyday life to reveal the internal mechanisms by which 

things work. (2013, 90–91)

The observation that Newtonian gravity should not be understood as 

causal action at a distance (Norton 2007, 16) is another reason to surmise 

that the proximality principle is tied to causal reasoning about natural sys-

tems, and that departures from the proximality principle involve shifts away 

from application of the familiar notions of efficient causation that constitute 

a “folk science” according to Norton.9

9.  But see section 6.2.4 ,where I discuss how the interventionist account of causation 
departs from the proximality principle.
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However, we should note that various branches of modern science do 

not employ the proximality principle. I have already mentioned Newton’s 

theory of gravity. Current theories of gravity should also be listed here. 

Quantum mechanics is notorious for its “spooky” nonlocal effects.10 Closer 

to neuroscience, we should consider the distinction between proximate 

and ultimate causal explanation in biology. Ernst Mayr (1961) argued that 

there are two contrasting and complementary explanations of the warbler’s 

migrating south. The ultimate causal explanation refers to the evolutionary 

reasons for this occurrence. It begins way back in the mists of time, before 

the birth of the bird in question, and black boxes the details of genetics and 

physiology that would explain precisely how the adaptive behavior occurs. 

The proximate causal explanation begins its story within the lifetime of the 

organism and reveals at least some of the inner workings of the black box, 

describing the environmental triggers for the hormonal mechanisms that 

bring about migratory flight.

The context for Mayr’s publication was a concern over the rising status of 

molecular biology, a discipline with the reductionistic aim of applying only 

the concepts and techniques of the physical-chemical sciences to the exami-

nation of organisms (Beatty 1994). Seeking a role for a more autonomous 

and less reductive kind of biology, Mayr argued that ultimate, evolutionary 

explanations could not be tackled with the same molecular approach that 

had successfully taken on other kinds of problems. We should note here that 

Mayr’s proximate explanations adhere to the proximality principle, whereas 

ultimate explanations are dissociated from it, for it is impossible to complete 

the push-and-pull details of a causal explanation that begins millions of years 

ago, where the initial causes are in deep evolutionary history. We can see why 

the proximate explanation, as well as various methodologies adhering to the 

proximality principle, tend to be reductionistic. This norm of explanation is 

dissatisfied when there are unfilled gaps in the account of causal interactions, 

so the rule is to search in the micro-details of the system for the processes that 

will remove the lacuna. Consider the ingestion of a tablet like Xanax and its 

effect on mood. The details of the causal interaction would be filled in by 

referring to processes happening at a lower scale than the observed cause 

and effect—that is, at the level of the microconstituents of the pill and the 

synapses in the person’s brain. A common metaphor for reductive science is 

10.  The important point here is just that contemporary physics does not rule out 
action at a distance (Norton 2007, 18).
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that of “digging down” to a lower stratum of micromechanisms. Similarly, in 

causal explanation adhering to the proximality principle, we can think of the 

scientist as tunneling underneath the surface level and digging through the 

mediating microcauses to find out how the effect comes about. This reduc-

tive tunneling strategy is, we can observe, feasible only if the cause is quite 

spatially and temporally close to the effect. With cause and effect separated 

by eons (as in evolutionary biology), it is impossible to tunnel down and 

reconstruct a detailed causal history—the deeds of all the warbler’s ancestors 

from prehistory to the present day.

Although Mayr’s ultimate explanations are still causal ones, we must appre-

ciate that in departing from the proximality principle, they depart from the 

norm whereby an ideal explanation of a phenomenon would show how it is 

the result of a series of efficient causal processes. Indeed, they are something 

of a throwback to Aristotle’s explanations in terms of final causes (distinct 

from efficient causes), except that the ultimate cause is without doubt in the 

past, preceding the effect. This is consistent with Mayr’s program elsewhere, 

that of modernizing teleological notions by rebranding them as “teleonomic” 

ones (Mayr 1988). The common feature to be noted in the explanations in 

physics and biology that depart from the proximality principle is that they 

decline to represent those phenomena as being governed by a series of effi-

cient causes at some fundamental level. This point will become significant 

in section 6.4.

6.2.2  The Need for Distality in the Research Strategy  

of Cognitive Neuroscience

When research is directed toward the question of how brain activity under-

lies intelligent, adaptive behavior—spelling out how the operation of per-

ceptual, motor, and other systems leads to appropriate actions in a complex 

environment—investigation must focus on the relationship between neu-

ral responses and a distal perceptual stimulus or motor action. The details 

of how that relationship is mediated (e.g., the transmission of light or 

sound waves from object to eye or ear, the physiology of efferent nerves 

from spinal cord to arm, the neuromuscular junction, and so forth) are 

subsidiary. Those details do not have explanatory relevance to the cognitive 

neuroscientist, in comparison to the nonproximal relationship between 

brain activity and extracranial state. An explanatory framework bound to 

the proximality principle is not appropriate since it gives no grounds for 
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privileging the connection between brain and distal object over the many 

intermediary structures and occurrences closer to the brain. Moreover, if 

a neuroscientist attempted to dig the explanatory tunnel from the distal 

stimulus to the neural response, including an account of all the microin-

teractions along the causal pathway, she would soon find herself caved in 

under a mass of mechanistic details, given the intricacy of the processes that 

occur. Another problem with the proximality principle is that brains differ 

widely in their details from one individual to another, and even within 

one individual across a lifetime, such that increases in the detail given in a 

causal explanation come with losses in its ability to generalize.

A framework is needed for conceptualizing the relationship between brain 

activity and extracranial state that forsakes proximality and embraces distal-

ity in its research strategy. The advantage is that such a strategy can justify 

the black-boxing of the details of the mediating causal processes, treating the 

simplification that it affords as virtue and not a vice. It is here that an anal-

ogy with the relationship between sign and signified, vehicle and content, in 

artifacts made to serve as representations, shows its use to the neuroscientist. 

With these artifacts, the intentional relationship between a concrete sign and 

the object that it signifies can reach indefinitely far in space and time: pieces 

of writing, pictures, and numbers can all refer to events at the beginning 

of the universe and light years away. Indeed, the intentional relationship 

should not even be treated in the same way as a causal one, one that con-

nects spatially and temporally located items. The relationship between such 

inscriptions as “the unicorn of the Bermuda Triangle” and its intentional 

target, which is not an object located in space and time, cannot be a causal 

one. Since the intentional relationship is not, on the face of it, bound to 

causation, consideration of the mediating link between neural response and 

distal item can be bypassed in explanations that cite intentional content.11

It follows that if one treats the relationship between neural activity and 

extracranial state (a stimulus or bodily action) according to the analogy with 

representational artifacts, as an intentional relationship, the door is open to 

treating it in a way that departs from the proximality principle. This may not 

11.  Of course, naturalistic explanations of original intentionality of mental states 
(as opposed to the derived intentionality of artifacts) do attempt to show that the 
intentional relationship reduces to certain kinds of causal ones. These attempts will 
be under discussion in section 6.4.
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be the only way to go beyond proximality, but it is the route traditionally 

taken. The neuroscientist buys into a framework in which it follows naturally 

that she can ignore the question of how representation and object are medi-

ated, allowing her to focus on the fact of their connection and its functional 

significance. Moreover, this captures the property that neurophysiologists 

sometimes report of sensory neurons—namely, that their responses seem to 

“reach out” to features of the world around them, regardless of the details of 

the intervening medium. Here is Horace Barlow (1972, 373): “The properties 

of the retina are such that a ganglion cell can, figuratively speaking, reach out 

and determine that something specific is happening in front of the eye. Light 

is the agent by which it does this, but it is the detailed pattern of the light 

that carries the information, and the overall level of illumination prevailing 

at the time is almost totally disregarded.”

In chapter 5, we saw that Barlow’s theory of single-neuron coding has 

been roundly criticized. But the point about the importance of distal rela-

tionships bears just as much on the alternative theories of population cod-

ing, only that it is groups of neurons, rather than individual cells, whose 

activity is said to represent some extracranial object.12

I have proposed that representation artifacts are the source for an analogy 

through which the relationships between distal, environmental events and 

neural activity studied in cognitive neuroscience can usefully be modeled. 

There is an attractive synergy with the account offered in chapter 4 of the 

other dominant technological analogy in neuroscience—the brain as com-

puter. An alternative analogy source would be person-level mental represen

tations, the putative bearers of original rather than derived intentionality. 

A reason to discount this option comes if we consider that the fruitfulness 

of scientific analogies depends on there being a relatively well understood 

analogy source. Although mental representations might strike some as being 

more intimately known than anything else, their operation is opaque, and 

they may be no more than a hypothetical posit of psychology and cognitive 

science. Representation artifacts are more perspicacious than person-level 

mental representations, for we can say what the vehicles, as opposed to their 

contents, are, distinguish the sender and consumer, and specify the contents 

12.  For ease of exposition, I will mostly give single-neuron examples in what follows.
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(usually) to a high degree of determinacy, whereas all this becomes conten-

tious when talking of mental representations.13 As Hesse (1955, 353) main-

tains, analogies serve “to enable the new and unfamiliar to be thought about 

and described in terms of the familiar.” Granted that the point of analogies 

in science is to put the unknown into view by appeal to similarity with some-

thing already well characterized, comparisons between neural and mental 

representations would not be helpful because both are quite murky.14 We will 

see in section 6.2.3 that an analogy with person-level, goal directed behavior 

does have a crucial role to play in theorizing neural representations. I note 

here that publicly observable behaviors are more familiar and less hypothet

ical than the idea of mental representations.

Consistent with my proposal, we see that the use of terminology borrowed 

from artificial systems of representation is all over cognitive and theoretical 

neuroscience. The notions of codes, decoding, reading and writing, maps, and 

even pictures are abundant in mainstream research.15 Although metaphors 

drawn from person-level cognitive performances are also present—such as the 

retinal neuron that “perceives”16—such analogies have not received the theo-

13.  Much work in philosophy of mind shows this. See, for instance, Neander (2017, 
chapter 7) on the problem of indeterminacy.
14.  A concern to be mentioned here is that the intentionality of public represen
tations is only derived from the original intentionality of mental representations. 
As such, it can be objected that public representations cannot serve as the famil-
iar analogy source for neural representations—only mental representations could, if 
anything. My response is that we must appreciate that the talk of familiarity here is 
a reference to our everyday use of representational artifacts, which can happen quite 
effortlessly following inculturation into the system of representations and does not, 
in the everyday practice, raise philosophical perplexities about the source of these 
objects’ intentionality, their grounding in the mental. My point is that in these prac-
tices, the intentionality is just taken for granted, and it is obvious to people schooled 
in a particular system of representation, what, for instance, the content of those 
items is. It is this everyday familiarity that the analogy of neural representations 
helps itself to.
15.  See deCharms and Zador (2000) and the references therein. See Brette (2019) 
for dissent from the mainstream positing of neural codes and representations, and 
section 7.2.2 in chapter 7 mentions some neuroscientists who reject the positing of 
representation in motor cortex.
16.  See Figdor (2018) on attributions like this. Her literalism about them is a differ
ent matter from the view targeted in this chapter—which is the literal interpreta-
tion of attribution of intentional content to neural states. However, an important 
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retical elaboration and regimentation granted to the technological analogies, 

where coding and decoding are given formal treatments.

Critics and doubters of neural representations often argue that less 

demanding notions of correlation or triggering would be just as adequate to 

describe sensory neurons’ reliable responses to specific distal stimuli, with 

less of the contestable baggage that comes with the positing of neural activity 

as representing something. However, we can now see that just invoking the 

less demanding notion of correlation between neural activity and extrader-

mal state does not facilitate the exclusive focus on the distal object needed by 

the cognitive neuroscientist. This is simply because there are too many pro

cesses, which can equally be said to correlate with the brain response, along 

the mediating chain from the distal object. Similarly, the notion of triggering 

does not isolate the distal object. Triggering is a causal concept which means 

that it opens the door to holding that any item or event along the mediating 

chain is a trigger of the neural response that it causes.

In short, the proposal here is that appeal to neural representation allows 

an important simplification in cognitive neuroscience because it facilitates 

and justifies the black-boxing of intermediaries between brain responses 

and the distal objects that are relevant to the explanation of behavior. Thus, 

if the task is to explain how neural responses in sensory cortex enable a 

mouse to locate food, and how activity in motor cortex enables a mouse 

to move its body in the direction of that food, the key component of the 

explanation is the relationship between distal items—the smell of some-

thing edible, the layout of the territory, locomotion in the direction of 

food—and the cortex. The detailed causal mechanisms of olfactory recep-

tion, afferent and efferent signaling to and from the cortex, and neuromus-

cular activation can be relegated to the background to allow focus on the 

now more significant connections between brain, body, and environment.

But that is not to say that accounts referring to more detailed causal pro

cesses have no explanatory relevance and must always be relegated to the 

background of neuroscientific investigation. An example will show how the 

account of representation-talk as a simplifying strategy fits with a picture of 

explanatory pluralism. Take the explanandum “Why does this fusiform face 

difference between Figdor and myself is that she assimilates analogical interpreta-
tions to literalism, whereas I treat them as substantially different from both literal 
and metaphorical interpretations of scientific theories and models.
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area (FFA) cell fire more action potentials when a face stimulus is flashed 

up?” It affords two different answers: proximate and distal. The proximate 

explanation traces the immediate causes of the spiking—the release of excit-

atory neurotransmitters by neurons whose axons terminate at the FFA cell’s 

dendrites, which leads to depolarization of the FFA cell above the threshold 

of action potential initiation. A proximate explanation might reach to a few 

steps further back in this causal chain, but the processes are too complex 

for it to be manageable to proceed very far without detriment to the meth-

odological principle of delivering a gapless account of causal interactions. 

It is important to appreciate that detailed explanations of extended causal 

process quickly become unwieldy not because I am attributing to the proxi-

mate explanation the requirement that it should bottom out at some lowest 

level of explanation (e.g., quantum mechanics); for even when we go no fur-

ther than the standard “bottom-out” level for neurobiology—the level that 

describes macromolecules and their configurations, and ion fluxes across the 

cell membrane (Machamer, Darden, and Craver 2000, 14)—extended causal 

tracing is unmanageable.

The distal explanation refers to the object in the environment that elicits 

the response, black-boxing the mediating processes. The FFA cell responds 

to this stimulus since it belongs to a cortical area whose specialized func-

tion is to represent faces to enable face recognition. The cell’s responses 

are finely tuned to such stimuli, just as the function of a portrait is to rep-

resent a face and thus is sensitive to its features.17 A key point is that the 

standard way of modeling and characterizing sensory neurons, in terms of 

their receptive field, is a nonproximal approach. A visual neuron’s receptive 

field is conceptualized as located outside the animal, in the visual field, and 

a somatosensory neuron’s receptive field as somewhere in the body of the 

animal. Yet elevated firing rate in response to stimulus is explained by the 

match between that stimulus and receptive field.

The plurality of explanatory forms is reflected in disciplinary plurality. 

Cellular neurobiology is the usual source for proximate causal explanations, 

whereas cognitive neuroscience is most ready to offer explanations of neural 

activity in terms of its relationship to distal objects and events. The reason 

for the dominance of the distal kind of explanation in sensory and motor 

17.  This is the standard account of FFA given by such papers as Kanwisher and Yovel 
(2006), though it is not universally accepted.
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cognitive neuroscience is not just that the explanandum (appropriate behav

ior in response to environmental stimuli) is defined distally, but also that 

distal objects provide a highly effective set of control handles for sensory and 

motor cortex neurons. For many neural systems, the precision and effective-

ness of control are not proportional to its proximity to the target. Precise con-

trol of states in a person’s brain can readily be obtained by modulating quite 

distant variables (like the contents of their Twitter feed), and this is easier 

to achieve than through more immediate neural interventions. It is a trivial 

point, but an important one, that I can modulate activity of contrast sensi-

tive cells in your visual cortex by flashing up this . . . ​on the page . . . ​from 

my location in space and time so remote from where you are now. This is bet-

ter control than I could achieve even with state-of-the-art neurotechnologies 

such as optogenetics or Designer Receptors Exclusively Activated by Designer 

Drugs (DREADDs). Indeed, it is currently impossible to cause complex images 

or beliefs to arise in someone’s brain through direct neural stimulation, and 

yet together all the typed words in this book, if my task is successful, will 

induce you to have a particular set of beliefs. This fact about the brain—that 

influence does not diminish with distance—defies the intuition that we have 

about causal-mechanical systems, that causal relevance or impact scales up 

with proximity. In situations where this intuition holds, application of the 

proximality principle is all that is needed. The fact that neural systems do 

not act in the way that the proximality principle would lead us to anticipate 

shows us why an alternative frame, not subject to this principle, is required.

To reiterate, this is not to say that neuroscientists do not investigate proxi-

mal causes. Scientific disciplines grow around techniques of experimental 

intervention—sets of control handles that require their own kind of labora-

tory provisioning.18 Thus, the cellular neurobiologist relies on high-tech, inva-

sive methods to intervene on neural activity. What is significant about the 

control handles used to modulate neuronal activity in cognitive neuroscience 

is that they are distal to the brain, quite low-tech, but extremely effective. As 

neurophysiologists from the time of Hubel and Wiesel to now have learned, 

18.  This relates to perspectival pluralism, the idea that different scientific perspec-
tives grow around particular choices in how to simplify subject matter and that a 
plurality of approaches is needed in neuroscience, given the complexity of the brain. 
See a related argument for pluralism in Longino (2006, 2013).
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the most effective way to modulate the activity of a visual cortical neuron is 

to find its most preferred stimulus.19 The putative representational targets of 

cortical neurons are at the same time the most obvious loci of control.

To conclude this section, I would like to emphasize that my class of expla-

nations in which representation-talk is well motivated is not restricted to cases 

where a behavior seems to depend on “off-line” reasoning about objects not 

currently present in the environment—the so-called representation-hungry 

tasks. A common argument against eliminativism about representations is 

that the need to posit representations shows itself when a system is engaged 

in off-line reasoning, and so needs a representation to serve as a stand-in for 

an absent object (Clark and Toribio 1994; Colombo 2014, 225). Yet much of 

the representation-talk in cognitive neuroscience concerns neural responses 

to available objects, and the “stand-in” justification provides no answer to the 

eliminativist in such cases. By recognizing that the positing of representations 

offers a convenient simplification, we see that it adds epistemic value, even 

for “on-line” cognitive activities, like perception and motor control.

6.2.3  Tidal Representations?

A concern may have already surfaced in the reader’s mind. Earlier in this 

discussion, it was noted that departures from the proximality principle occur 

elsewhere in science (namely, in physics and evolutionary biology). My jus-

tification for the cognitive neuroscientist positing representations seemed 

only to rest on the need to depart from the proximality principle. Do I mean 

to suggest that a physicist would be equally justified in positing that tidal 

activity represents the position of the moon, since her treatment of the 

relationship between moon and tides departs from the proximality princi

ple? There is obviously an incompleteness in the account presented so far. I 

have asserted that the analogy with public representations is apt for neural 

activity, but I have not said why it is any more apt in neuroscience than in 

gravitational physics. I need now to mention an additional feature of the 

relationship between neural activity and distal states that makes the analogy 

19.  See Hubel and Wiesel (1998) for recollections of the discovery of the barlike stim-
uli that best activate neurons in primary visual cortex; and also see Bashivan, Kar, and 
DiCarlo (2019) on the use of machine learning to discover the optimal stimuli for 
neurons in another visual area, V4.
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with the intentional relationship appropriate in a way that it is not for the 

tidal case. This is due to the robustness of the distal relationship between 

neural activity and object, over variations in the more proximal connections.

Consider some experiments on movement control using brain computer 

interfaces, which introduce perturbations to the relationship between activ-

ity in motor cortex and the angle of movement of a computer cursor so that 

the subject can no longer accurately direct the movement toward targets pre-

sented (Jarosiewicz et al. 2008).20 In response to such perturbations, activity in 

motor cortex plastically modifies itself, restoring accuracy of the movements. 

It is natural to explain these results by appealing to intentional notions—

adjustment of cortical representations to restore a mapping between neu-

ronal activity and movement. Indeed, it is fitting to treat this plasticity and 

robustness of mapping as characteristic of the system being intentional in 

the etymological sense—as the motor cortex aiming at its intentional object, 

and hence reorienting itself toward it even after a perturbation. In contrast, 

the nonproximal relationships posited in physical systems do not evoke any 

sense of purposiveness or goal directedness.

Returning to the worry over the overgeneralization of my account to “tidal 

representations,” the new thing to consider is that in addition to being dis-

tal, the relationship between neural activity and extracranial object exhibits 

robustness. A moment’s consideration will make apparent that the distal rela-

tionship between moon and tide does not share this feature. If it did exhibit 

robustness—with a specific height of the tide robustly relating to a specific 

position of the moon—what we would find is that when a local perturbation is 

made to the beach, such as with a wall being built to stop the tide reaching so 

far, the seawater would somehow adapt its activity to overcome this obstacle 

and reach the same tidal height as before. That is, someone would have more 

luck adjusting the course of the seawater by intervening on the position of the 

moon than by building a wall along the beach. If the relationship between 

tide and moon did exhibit this robustness, it might make sense to employ the 

language of representation. But that this scenario sounds so weird in the tidal 

case is an indication that the intentional notion is not appropriate here.21

20.  See Gilbert, Sigman, and Crist (2001, 684–685) for examples of plasticity in response 
to lesions in sensory cortex as well.
21.  Adherents of dynamical systems theory (DST) who propose to eliminate 
representation-talk, such as Hutto and Myin (2014), might object to my account that 
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This weirdness demands further examination. For ordinary physical phe-

nomena, we have the strong intuition that the impact of a remote gravita-

tional influence can be undermined by the effects of closer causal factors (like 

the building of the wall). And if we consider physical systems understood 

purely as causal systems, it is impossible for a remote cause to bypass the 

interference of disturbances in the causal chain closer to the effect and make 

its presence felt regardless. In contrast, the overriding of proximal factors 

by distal ones fits an intentional frame naturally enough. In addition, this 

intentional treatment supports a range of counterfactuals about what would 

happen if the relationship between neural response and distal object were 

disturbed. Yet here it is apparent that by “intentional treatment,” we are 

now invoking goal-directed behavior, actions, of entire, intelligent creatures 

showing this characteristic of being distally driven and robust: the homing 

pigeon that single-mindedly directs itself to the coop in the face of perturba-

tions to the flight path, or the squirrel whose foraging activity is driven by 

long-term need and not sent off course by immediate stimuli or appetites.

While the notion of robustness might be applied to the intentional rela-

tionship that an artifact like a map has with its target, doing so is more of 

a stretch.22 So it does seem that in addition to the justification of neural-

representation-talk that stems from analogy with representation artifacts, 

there is also an analogy in play between neural behavior and goal-directed 

actions of whole animals. This analogy source, as with public representations, 

their framework is equally well placed to model nonproximal interactions. Dynami-
cists in fact model neural systems in terms of relationships between variables that need 
not be causally contiguous, so they also have resources to depart from the proximality 
principle. However, the dynamical approach, which views cognitive systems through a 
perspective—a set of modeling techniques—developed in the study of physical systems 
would not be so able to account for these kind of robust and plastic responses that are 
never demonstrated in the world of physics. Consider the Watt governor and steam 
engine system, famously presented by van Gelder (1995) in his argument that cogni-
tive systems could be dynamical rather than computational systems. What a physical 
artifact like the governor+engine lacks is robustness and plasticity to restore function 
after damage. The better analogy for the cognitive system is not the governor+engine 
alone, but governor+engine+engineer. If a weight falls off the spindle arm, disturbing 
the relationship between arm angle, valve opening, and engine speed, the engineer 
will come along with a new part to restore the relationship. It is this kind of counter-
factual occurrence that is not accounted for in dynamical models.
22.  For instance, the text message “Geet me somebing to droonk” can elicit the same 
response as “Get me something to drink,” despite the perturbation.
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is more perspicacious than the notion of original intentionality since it stems 

from common, publicly observable occurrences. The upshot is that there is 

a complex set of analogies behind talk of neural representations: on the one 

hand, neural responses are treated as constituting codes and maps, and on 

the other, they are analogized to the robust and distally sensitive behavior of 

intelligent creatures. What these two have in common is the indifference of 

the intentional or intending relationship of these artifacts and goal-directed 

actions, respectively, to the details of mediating factors between the represen

tation or action and its target.

6.2.4  Interventionist Causes, Not Intentional Notions?

Interventionism is currently the most popular framework for explicating 

causal reasoning in science. Arguably, interventionism breaks with the proxi-

mality principle because assertion of a causal relationship between X and Y 

requires only that interventions on X, where these must fulfill some techni-

cal criteria, are accompanied by changes in Y (Woodward 2003, 59). It is a 

significant break with older accounts of causation in the philosophy of sci-

ence, particularly process theory (Salmon 1984), which held contiguous trans-

mission of a “mark” to be one of the conditions on causal relationships—this 

being a way of theorizing that captures the intuition behind the proximal-

ity principle. According to Woodward, a remote influence on Y, acting at a 

distance, is just as much a candidate for a cause as a proximal one, so long 

as the interventionist conditions are met. This account of causation does 

not motivate or support the proximality principle,23 so it leads to an objec-

23.  I quote the following long passage, in which Woodward seems to state that inter-
ventionism does not recommend that investigation into causes in the special sciences 
conform to the proximality principle, seeking discovery of “fine-grained” intermediate 
causes between the observed, noncontiguous “macro-causes”:

In common sense and the upper-level sciences, causal relata are often described as operating 
across spatiotemporal gaps or, alternatively, in a way that is non-specific about the spatiotem-
poral relationship between cause and effect. Recovery from a disease will typically occur some 
significant lapse of time after the administration of the drug that causes recovery. A slowdown 
in economic activity may be caused by the decision of the central bank to raise interest rates 
but it seems doubtful that there is any clear sense in which the latter event is spatiotemporally 
contiguous with the former. It is true that in many, but by no means all, cases involving macro-
causality, there will exist (from a more fine-grained perspective) a spatio-temporally continuous 
process linking the cause to its effect. However, even when such processes do exist, upper level 
causal generalizations often do not specify them and the correctness and utility of the upper 
level generalizations do not rest on our actually having information about such processes. 
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tion to my account: given that the preeminent account of causal explanation 

in the special sciences departs from the proximality principle and accepts 

that demonstration of remote, noncontiguous causal relationships can be 

explanatory, not calling for research into intermediate causal relationships, 

the cognitive neuroscientist has no need to refer to intentional relationships 

to black-box the details of intermediate causal processes between distal object 

and neural activations—she need only refer to the interventionist standards 

shown by Woodward to be prevalent in various sciences such as economics 

and medicine. Intentional notions are indeed superfluous.

Consideration of this objection brings to light one last feature of the prac-

tice of positing intentional relationships in cognitive neuroscience, which is 

that they are fundamental to the explanation. By this, I mean that in stating 

what a neuron represents, the scientist is staking a claim on what is most 

essential to explaining the existence and operation of this neuron within 

the economy of the brain. A parallel here is with the status of computational 

descriptions at the top level of explanation for Marr (1982)—they purport to 

tell you what is most important to know about a cognitive or neural system 

while the causal details of implementation are secondary to them, both in 

order of investigation and explanatory significance.24 More causal details can 

always be filled in, but within the explanatory norms of cognitive neuroscience, 

the computational or intentional explanations do not lack depth without 

them.25

On the question of whether explanations positing remote causal relation-

ships between neural activations and extracranial objects could count as 

fundamental, Woodward would seem to deny this. I quote the following 

This feature is captured nicely by interventionist accounts which take the distinctive feature 
of causal relationships to be exploitability for purposes of manipulation, regardless of whether 
there is a spatiotemporal gap between cause and effect. (Woodward 2007, 82)

24.  Nothing here assumes any autonomy (lack of direct constraint) between causal 
and intentional or computational descriptions of the systems. See Dennett (1995) 
for a helpful discussion of the level of computation or function and in what sense it 
is primary.
25.  This marks my disagreement with Piccinini and Craver (2011), who assert that com-
putational and intentional explanations are a kind of superficial causal-mechanistic 
explanation and therefore do not have a distinct and, as I say here, “fundamental” 
status. My view that within the explanatory context of cognitive neuroscience, such 
explanations are self-sufficient and not lacking in depth, aligns with points made by 
Egan (2017, 154) about the interest relativity of explanation.
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passage, in which Woodward observes that assertions of interventionist causal 

relationships permit “deeper explanation,” likely in more “fundamental” 

terms:

I fully agree (who would deny this?) that if it is the case that some relationship R 

to the effect that interventions on X are associated with changes in Y holds (e.g., 

private school attendance boosts scholastic performance), then of course we should 

expect that there will be some deeper explanation, perhaps to be found in some 

other, more fundamental science, for why R holds in the stable way that it does. 

(Woodward 2014, 699)26

What this indicates is that positing even an interventionist causal rela-

tionship between two phenomena commits one to a framework in which the 

relationship between an effect and its spatiotemporally distant cause cannot 

be fundamental (explanatorily basic) and stands open (at least in principle) 

to deeper explanation in terms of more proximal processes or mechanisms, 

or in terms of some fundamental laws of physics. But in cognitive neuro-

science, the distal relationship is just what is fundamental and primary in 

the accounting for neuronal behavior: in an inversion of the hierarchy that 

would be imposed by causal explanation, the causal-mechanical details of 

how the distal relationship obtains is secondary to this.

6.2.5  Summing Up

I have aimed to show that representation-talk in cognitive neuroscience is 

well motivated, even for phenomena that seem, on the face of it, to require 

deployment of less demanding relationships such as triggering and correla-

tion. My argument began with the observation that scientists cannot and 

should not always follow the proximality principle. Cognitive neuroscien-

tists’ departure from the proximality principle, essential for the project of 

examining the neural basis of behavior, is aided by their drawing on an anal-

ogy between neural activity and certain artifacts used as representations, and 

to some extent on an analogy with goal-directed behavior as well. I noted 

that experimental and explanatory pluralism has grown up with subdisci-

plines of neuroscience focused on either distal or proximal relationships.

26.  Compare also Woodward (2007, 103): “Given a true garden variety causal claim, 
there will be some associated in-principle physical explanation (or story or account, 
to use more neutral words) for its holding, and this will include, among other factors, 
appeal to fundamental laws.”
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One final point that I should emphasize is that by acknowledging that 

no more than a rough analogy may hold between neural representations 

and the representations with which we are most familiar (scripts, maps), 

we should expect plenty of disanalogies. It may well be that so-called neural 

representations do not have determinate content or well-defined vehicles and 

consumers. Indeed, the justification of positing neural representations should 

not depend on neural systems sharing all these properties in common with 

public representation. The expectation of there being more than a rough anal-

ogy is what causes problems for defenders of neural representations—the per-

ceived need to solve the indeterminacy problem is a good example. Likewise, 

elmininativist objections such as Ramsey’s attack on the receptor notion boil 

down to the observation of disanalogies between neural responses and the 

representational artifacts that set the gold standard for being representations. 

My view is that representation-talk in neuroscience is apt even if the neu-

ral representations do not have determinate content or well-defined vehicles 

and consumers. The scientific practice is justifiable even if the stringent “job 

description” for being a representation, which originated in the analysis of 

public representations, is not met.

This summary makes clear that my account satisfies the first two stated 

desiderata of charity and articulation of the epistemic benefit of representa

tion posits. The third, metaphysical neutrality, is maintained by the view’s 

making no commitment to a metaphysical theory of representation, con-

tent, intentionality, or causation. It merely assumes that some items are 

considered to be representations and says that neural activations are treated 

by analogy to them, while being agnostic on what makes the uncontrover-

sial cases genuinely representational, and whether neural activations share 

those properties. Likewise, I have said that ordinary causal explanations are 

committed to following a proximality principle, and explanations positing 

intentional relationships to distal objects depart from this methodologi-

cal principle, but I have remained noncommittal about the metaphysical 

picture surrounding the proximality principle—the question of whether 

nature fundamentally is or is not a densely connected “causal nexus.” With 

this metaphysical neutrality, I can justify representation posits in neurosci-

ence without tying their fortunes to the ability of philosophers to develop 

convincing theories about the fundamental nature of representation and 

causation, and indeed about the fundamental nature of nature.
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6.3  Comparisons

Preceding philosophical treatments of neural representations divide into real-

ist and antirealist camps. Realists affirm and antirealists deny that there are 

patterns of neural activation that satisfy the criteria for intentionality estab-

lished elsewhere. There are many more published accounts than I can prop-

erly discuss in this chapter. Next, I take a representative sample of current 

realist and antirealist views and assess them with respect to the three desid-

erata that I set out for my own account: (1) charity, (2) articulation of the 

epistemic benefit of representation posits, and (3) metaphysical neutrality.

6.3.1  Realisms

The most comprehensive argument for realism about neural representations 

comes from Nicholas Shea.27 Like me, Shea (2018, 29) places high value in 

having an account that can explain the successes of science by virtue of its 

positing neural representations. The difference is his assertion that the reality 

of neural representations explains the scientific successes, and this then feeds 

into a project of naturalizing intentionality. In contrast, my explanation of 

the success of the practice refers to its advantages as a simplifying strategy, 

and I do not venture into the project of naturalizing intentionality. Thus, 

both mine and Shea’s accounts can satisfy the desiderata of charity and epis-

temic accountability, but his is not metaphysically neutral. Indeed, a selling 

point of my explanation of the success of the practice of positing representa

tions is that it does not depend on the acceptance or endorsement of a natu-

ralized theory of content, like Shea’s varitel semantics, whereas Shea’s realism 

puts the justification of the scientific practice at the mercy of the acceptance 

of varitel semantics or some such theory.

While Shea’s overt explanation of the success of research positing neural 

representations rests on the truth of the claim that there are such entities, 

Shea and I converge on the idea that the indispensability of representation-

talk lies with its ability to simplify matters. Shea concedes to antirealists like 

Ramsey and Egan that ordinary causal explanations of the distal relation-

ships explored in sensory neuroscience are available, at least in principle 

(2018, 29). In answer to the question “Why not just talk about correlations, 

27.  See also Colombo (2014), Neander (2017), Thomson and Piccinini (2018), and 
Millikan (2020).
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functions, etc., and drop the content talk?” Shea (2018, 205) writes, “The 

trouble with these views is their complexity. More complex properties are 

generally less good candidates for explanation.” Furthermore, he holds 

that explanations limited to nonsemantic causal, relationships miss out on 

the “real patterns” of robust distal relationships occurring across different 

instances and converging on certain behaviorally significant items in the 

environment (Shea 2018, 202). In response, Egan (2020) argues that in this, 

Shea has conceded everything that matters, in that the ultimate justification 

for positing representations is pragmatic. In her own view, nonintentional 

causal relationships are the only ones that actually obtain, but it is pragmati-

cally beneficial for cognitive neuroscientists to talk about their target systems 

and models of them having semantic properties like content (more on this 

in section 6.3.2). My own feeling is that the realist concedes too much in 

granting that the ordinary causal explanation is always available—even for 

when the explanandum is a singular event or individual cognizer, not a gen-

erality that holds across a range of events or individuals. A lesson from our 

exploration of the proximality principle was that there are certain systems 

and relationships in the world that conform to our intuitions about causal 

processes (such as causal import scaling up with proximity) and for which 

investigations adhering to the proximality principle are most fruitful; and 

there are other systems and relationships in nature, such as those examined 

in cognitive neuroscience, that are not like that. Thus, we should not assume, 

for the latter case, that ordinary causal explanations (by which we mean ones 

in alignment with the proximality principle) are available in cognitive neu-

roscience in principle. In fact, a priori belief in their availability amounts to a 

metaphysical view that fundamental reality is a causal nexus (see section 6.4).

The overt point of Bechtel’s (2016) account of research on hippocampal 

place cells is to maintain an interpretation of neuroscientists’ representation-

talk as ontologically committed, not a mere gloss as supposed by Frances Egan. 

Implicitly, the paper endorses realism about neural representation. Moreover, 

identification of neural representations, as well as discovery of their proper-

ties, are presented as the culmination of decades of work on the role of the 

hippocampus in navigation in mammals. While I, like Bechtel, endorse neu-

roscientists’ description of brain areas as having representational functions, I 

do not go along with the realist drift of his account. This is because it depends 

on the literalist acceptance of a comparison between brains and control sys-

tems that, in my opinion, is better given an analogical interpretation. Bechtel 
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accounts for the neuroscientists’ attribution of representations to neural sys-

tems as being based on their assumption that the brain is a control system. In 

control theory, “a controller needs information about the plant that is being 

controlled or what the plant is interacting with,” and hence it needs represen

tations (Bechtel 2016, 1316).

Bechtel’s argument that neuroscientists are right to uphold ontological 

commitment to neural representations rests on the assumption that the brain, 

literally, is a control system. Thus, his account does not satisfy the desid-

eratum of metaphysical neutrality. In adhering to this literal interpretation, 

there is no acknowledgment that control theory has its origin in engineering 

and is essentially a framework for the analysis of human-built systems. As 

such, it is an instance of an engineering analogy being applied within neu-

roscience, and as in the case of the brain-computer analogy, I warn against 

overliteral interpretations. That the brain can usefully be treated as a control 

system does not entail that it literally is a “controller” interacting with a 

“plant.” Again, the danger with ignoring the analogical nature of the neu-

roscientist’s borrowing is that it leads to ignorance of disanalogies between 

brains and controllers; but once the analogical interpretation is in place, it 

blocks the realist inference that the terms employed in control theory, espe-

cially the notion of the representation of the plant, must actually have their 

counterpart in the brain.

These realisms were all of the robust variety, arguing that the success of 

the science entails ontological commitment to neural representations that 

satisfy some fairly stringent conditions on being representations (e.g., speci-

fication of content and normativity). This robust realism stands in contrast 

to the “deflationary realism” proposed by Coehlo Mollo (2021). Like me, 

Coehlo Mollo argues that scientific explanations with representation-posits 

are grounded in an analogy with representation artifacts (“public represen

tations”), and therefore, we should expect disanalogies and not hold the 

scientists’ posits to the definitional standards of public representations. For 

the cases discussed in that paper, such as the positing of neural or cognitive 

maps, a charitable and epistemologically satisfying account is offered. How-

ever, this does not provide the resources to underwrite the hard cases, where 

representations are attributed to sensory neurons. On the metaphysics, 

Coehlo Mollo is less committed than the usual realist because he does not 

stake his case on there being entities with full-blown semantic properties in 

the mind or brain. However, there is a metaphysical picture in play, one in 
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which the ultimate targets of explanatory models are “real causal patterns” 

(Potochnik 2017; and also see chapter 5 of this book). He writes: “Deflation-

ary realism holds that the cognitive representational model is an idealised 

model: a partially distorted and simplified picture of the causal features that 

contribute to bringing about the characteristic patterns of behaviour that 

it aims to explain, namely representational patterns” (2021, 18). What this 

comes to is a claim that the relationships and patterns referred to in “cogni-

tive representational models” are in fact nonsemantic, causal ones, but ones 

that are best brought to the fore by viewing them through an idealizing lens, 

whereby they are depicted as intentional relations.

6.3.2  Antirealisms

Since there are a range of views left open, once the reality of neural repre

sentations has been denied, the antirealists are a disparate bunch, ranging 

from eliminativists, to fictionalists, to polite deflationists. I will here offer 

some comments on each of these “-isms” in turn.

I take Ramsey (2007) as my representative eliminativist (at least regarding 

the receptor notion) since he gives the most sustained attack on the represen

tational posits of sensory cognitive neuroscience.28 His main argument is that 

such posits do not satisfy the “job description” of representations, properly 

speaking, and the sensory responses would be more accurately characterized 

as the end point of a nonintentional cause-and-effect chain, like a series of 

switches triggered in sequence.29 As argued previously, this claim about the 

availability of causal explanations expresses a generalized metaphysical view 

about the nature of the relationships under discussion, and furthermore, 

it neglects to consider the actual applicability of the proximality principle 

to the systems investigated in cognitive neuroscience.30 Needless to say, elimi-

28.  See also Hutto and Myin (2014).
29.  A further argument is that representation-talk is harmful, getting in the way of 
the conceptual development of sensory neuroscience (Ramsey 2007, 147). However, 
he does not take into account the cost of neuroscientists having to abandon the sim-
plifying strategy provided by the positing of these representations.
30.  Ramsey (2007, 142–143) nicely conveys how the causal-mechanical explanation 
gets stuck with the proximality principle:

Sensory receptors are functionally similar to protein receptors on cell membranes. When the 
mechanics of cell membrane protein receptors are fully articulated, few people are inclined 
to claim that protein receptors actually serve as representations. Instead, they are seen as 
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nativism scores badly on my first desideratum since it is the most revisionary 

(and therefore uncharitable) interpretation of the scientific practice. It does 

not perceive any epistemic benefits in the positing of representations in sen-

sory neuroscience, and it takes a strong metaphysical stance of denying all but 

nonintentional causal relationships in those systems.

The other versions of antirealism are not revisionary—they do not rec-

ommend that neuroscientists dispense with intentional talk, but they do 

insist that those terms not be understood realistically, as referring to actual 

representations in the brain; and it is because of the utility of the represen

tation language that it is granted this stay of execution. Two neuroscien-

tists, Kriegeskorte and Diedrichsen, nicely spell out the case for this kind 

of approach. They write: “We could avoid representational interpretations 

altogether and approach the brain as a dynamical system . . . ​The dynami-

cal systems perspective is fundamental (in that it captures what the brain 

does at the level of physical mechanism) and complete (in that it should be 

able to account for all aspects of brain function)” (2019, 408).

However, they observe that that perspective would be impractical 

because of its complexity. Analogizing the brain to a computer, which like 

the brain is said to be fundamentally a dynamical system, they argue that a 

representational perspective is in practice indispensable:

Consider the case of computers: They too can be understood as dynamical systems. 

However, interpreting the patterns of charges and currents as representations of 

data and instructions enables us to capture a computer’s behavior more concisely 

in a high-level algorithmic description that reveals the dynamics in terms of the 

implemented functions. Like a computer, the brain is a dynamical system, and 

representational accounts can help us cope with its complexity. (2019, 409)31

The pragmatic justification for representation-talk, as a means of simpli-

fying the brain, is in alignment with my account. But the approach takes 

structures that reliably transport specific molecules (or other chemical or electrical phenom-
ena) into the cell; they serve as a type of non-representational transducer. Similarly, when the 
mechanics of receptors in our sensory cognitive systems are properly understood, we see that 
they also play a relaying role, not a representational role.

The problem is that causal tracing of the mechanics of sensory receptors will 
never find their way out to the distal dependencies central to cognitive neuroscience.
31.  See Roskies (2021) for an interesting philosophical discussion of the use of func-
tional magnetic resonance imaging (fMRI) and data analysis to chart representations 
as promoted by these authors.
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the further metaphysical step of endorsing realism with respect to the phys-

ics perspective on the brain (as a dynamical system or “physical mecha-

nism”) and antirealism regarding the intentional perspective. For my part, 

I opt to be agnostic on this point. This difference is apparent in the two 

philosophical articulations of the approach that I will examine.

Neural representation fictionalism (NRF)—articulated though not unequiv-

ocally endorsed by Mark Sprevak—proposes that

neural-representation talk in cognitive science is perfectly in order and cannot, and 

should not, be eliminated or paraphrased away from serious fact-stating language. 

However, neural-representation talk does not bring with it any commitment to 

the existence of neural representations since it is understood as systematically 

false. Talking about neural representations is a useful device for cognitive science, 

but no more ontologically committing than talking about water as a continuous 

incompressible fluid is in fluid dynamics. (2013, 548)

The comparison with fluid dynamics brings our attention to the point 

that talk of neural representation is to be understood as a certain kind of 

scientific idealization. This would account for the epistemic benefits of 

this practice, and NRF is fairly charitable to current scientific practice since 

it does not charge it with a gross methodological failure (in the way that 

eliminativism does), although it leaves open the possibility that scientists 

who uphold ontological commitment to neural representations are mis-

taken about their objects of study.32 As with the purpose of this chapter, 

one of Sprevak’s motivations is to avoid the metaphysical burden taken 

up by the realist, that of having to naturalize intentionality. But NRF, as 

presented in the passage by Sprevak quoted here, is not metaphysically 

neutral since it denies the existence of neural representations and says 

that claims regarding them are, strictly speaking, false. That said, Sprevak 

(2013, 540) does mention that it is possible just to remain agnostic about 

the posits given a fictionalist treatment. That position would be quite simi-

lar to my account, in that it does no more than reject a literal interpreta-

tion of the science.

Egan’s deflationary account (2020) is less straightforward to assign to our 

realist/antirealist classifications because it subscribes to realism about the 

32.  Ramsey (2020) argues that most scientists employing this framework take on 
this ontological commitment, unlike the noncommital stance of Kriegeskorte and 
Diedrichsen (2019), quoted previously.
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representational vehicles and mathematical contents posited in neurocog-

nitive models,33 but not to the ordinary intentional content. The proposal 

is that “a cognitive model posits . . . ​representations just in case it identifies 

representational vehicles, via fR [the realization function], which play crucial 

causal roles in the exercise of the capacity, and assign these vehicles contents 

in fI [the interpretation function]” (2020, 40).

The critical feature is that the assignment of contents is pragmatic, 

which is to say that of the indeterminate suggestions for content that come 

from correlations or homomorphisms between external objects and neuro-

nal activations, the researcher selects a determinate content most relevant 

to their explanatory project. This attribution of content by the researcher is 

no more than a heuristic gloss.

Since mind-independent facts do not by themselves fix intentional con-

tents for neural representations, Egan’s counts as an antirealist view. This 

antirealism leads her to the view that, ultimately, explanations positing neu-

ral representations are a species of causal explanation. This is because it is the 

states and structures of neural systems, identified as vehicles, that provide 

explanations of cognitive capacities; but only the causal properties of those 

states and structures are relevant to this. Ultimately, this leads to the position 

that there are not neural representations except in the eye of the researcher: 

“Representations are distinguished from mere causal relays by the fact that 

they are assigned contents by the interpretation function fI, but since the 

content assignment is confined to the heuristic gloss, it might be argued 

that the phenomenon of interest—representation—has indeed disappeared” 

(2020, 43).

This is an implication that Egan does not disavow. Regarding my three 

aims, Egan, like Sprevak, scores well on the first two but not the third. 

Although the deflationary account is explicitly not a general metaphysical 

theory of representation (Egan 2020, 43), it does make the unequivocal 

metaphysical claim that relationships between neural activations and distal 

objects are not intentional ones, but they are causal ones.

33.  See Egan (2017). Egan is a literalist about neural-computations, as mentioned in 
chapter 4.

Downloaded from http://direct.mit.edu/books/book-pdf/2345162/book_9780262378628.pdf by guest on 25 March 2024



Why “Neural Representations”?	 177

6.4  Implications

If you have been keeping track of the scores, you will have noticed that 

there are rival views that I admit rate highly on the first two aims of charity 

and accounting for the epistemic benefits of representation-talk, but none 

that achieve the third, metaphysical neutrality. On this system of point 

scoring, my account is the winner; but this result, rather than convincing 

readers of the superiority of my proposal, may instead leave them with 

suspicions and doubts about the third aim. What does it mean to state that 

an interpretation of neuroscientific practice is metaphysically neutral, and 

why should neutrality be desired? In this final section, I say more about 

the nature of this third constraint. We will see that it is the adherence to 

a mainstream naturalistic picture, originating in the philosophy of mind, 

that prevents the rival theories achieving metaphysical neutrality; it turns 

out, furthermore, that this picture is not consistent with the naturalistic 

understanding of causation developed in the philosophy of science.

In operation, metaphysical neutrality means that in the philosophical 

interpretation of the neuroscientist’s employment of controversial terms 

such as representation and causation, one foregrounds the epistemic and 

pragmatic features of these terms (their roles in empirical investigation and 

explanation), putting aside metaphysical worries about the grounds of these 

notions. A good model for this foregrounding of the epistemic and prag-

matic, and the relegation of the question of metaphysical underpinnings, is 

provided by Woodward’s (2014) functional approach to causation. His inter-

ventionism treats “causal cognition” as an “epistemic tool” and analyzes 

causal concepts and patterns of reasoning in terms of how well they serve 

the scientist’s goals and purposes (2014, 694). It eschews the metaphysical 

project of showing how causal terms reduce to noncausal ones, thereby 

fitting causation into a more fundamental world picture. Similarly, my 

account of representation posits in neuroscience has focused on how they 

aid the scientist’s project of simplifying the brain—the epistemic task that 

is the subject of this book. Similar to Woodward, I eschew the metaphysical 

project of showing how intentional terms are grounded in nonintentional 

ones. The same approach was taken in chapter 4, where I accounted for 

the epistemic benefits of positing neural computations while showing how 

this practice is not dependent on there being a philosophical consensus 
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on the tricky problem of implementation—how to state the objective con-

ditions for a physical system being an implementation of a computation 

while avoiding pan-computationalism. As stated at the start of this chap-

ter, metaphysical neutrality allows a more charitable interpretation of the 

scientific practice because it denies that the justification or motivation for 

the practice stands in need of support from a philosophical theory of the 

controversial terms, hitching the fortunes of the science to the outcomes of 

long-running debates in philosophy (cf. Rescorla 2013, 693).

The mainstream naturalistic picture that comes from the philosophy of 

mind and is inherited in most discussions of representation in the philoso-

phy of neuroscience is very much one that puts metaphysics in the fore-

ground. Its primary ontological assumption is that fundamental reality is 

constituted by physical entities, processes, and properties. These in turn make 

up a causal nexus, which is to say that reality has a “causal structure” revealed 

in true causal explanations.34 The ontological status of intentional proper-

ties, entities, and relationships is taken to be questionable in comparison to 

the presumed realism with respect to physical and causal ones. To claim a 

place for the intentional within mind-independent reality, it must be shown 

how intentional properties, entities, or relationships are related to noninten-

tional ones by some respectable metaphysical dependency relationship such 

as supervenience. This is the problem of location (Jackson 1998, chapter 1) 

or placement (Price 2011, chapter 1). More specifically, the challenge, taken 

up many times, is to naturalize intentional relationships by showing how 

they are grounded in specific kinds of causal relationships.35 Both the realists 

and the antirealists discussed in section 6.3 ask whether intentional content 

supervenes on causation. The realists answer yes and the antirealists answer 

no, while both subscribe to a metaphysical picture in which causal relation-

ships are certainly present in mind-independent reality.

34.  See Craver (2013, 144–145) on the notion of causal structure and nexus, drawn 
from Salmon (1984). While the talk of “causal nexus” is not ubiquitous (it occurs, 
for instance, in Egan 2020, 42: “content captures a salient part of the causal nexus in 
which the state is embedded”), it is just one way of stating the orthodox metaphysi-
cal idea of causal realism—“the doctrine that causation is a feature of objective or 
mind-independent reality” (Menzies 2007, 191).
35.  See, for instance, Egan (2019) for a review of attempts in this area.
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Not only is this mainstream picture problematic because it makes 

the respectability of scientific practice contingent on the success of the 

philosophers’ project of naturalizing intentionality; its claims about the rela-

tionship between physical reality and causal relationships are dubious from 

a more broad naturalistic perspective that considers what contemporary 

physics has to say about these matters. As Price and Corry (2007, 2) write, 

the “issue of the place of causation in the constitution of the kind of reality 

revealed to us by physics remains both highly problematic and highly impor

tant.” Since Russell (1913), causal realism has been condemned for its alleged 

incompatibility with modern physics.36 Yet some kind of causal realism is 

required for the notion of there being a set of causal relationships that are 

always more basic than intentional relationships. Maybe the idea is that this 

causal nexus is found not at the level of fundamental physics. But the natu-

ralistic standing of such proposals, which are in any case very vague—more 

of an intuition or a worldview—can also be queried.

In this chapter, we have seen that a key metaphysical assumption accepted 

by realists like Shea and antirealists like Ramsey and Egan is that a causal 

explanation of the relationship between a distal object and particular neural 

activation is always available in principle as an alternative to one referring 

to intentional notions. But given that the complexity of the actual neuro-

physiological situations means that the replacement causal explanations are 

not practically achievable, the thought must be that there are always ontic 

explanations available; that is, explanations existing in nature independent 

of human activity and articulation (Craver 2014). This is another strong 

metaphysical commitment that my account dispenses with. Within phi-

losophy of science, the dominant account of causation is interventionism, 

due to its good fit to scientific practice, especially in the special sciences. 

Given his emphasis on human cognition and the practice of giving causal 

explanation (Woodward 2014, 693), Woodward’s interventionism, argu-

ably, does not allow the supposition of (human-independent) ontic causal 

explanations. Hence, it would not support the view that explanations posit-

ing intentional contents can always, in principle, be replaced by ordinary 

causal explanations. A more general, and perhaps more important, point is 

36.  See, for instance, Norton (2007).
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that Woodward’s account leaves it open that there are modes of inquiry into 

classes of phenomena for which causal notions are inapplicable.37 It may be 

that the robust, distally directed relationships that cognitive neuroscientists 

treat as intentional ones, and whose characterization as such is taken to be 

explanatorily fundamental, are one such class of phenomena, at least within 

that mode of inquiry. On this alternative to mainstream naturalism, there is 

no pressure to naturalize the intentional relationships by grounding them in 

causal ones because the metaphysical assumptions that motivate this kind of 

project are absent.

To properly illustrate where we have arrived at the end of this chap-

ter, it is helpful to contrast it with Dennett’s picture of the three stances 

that can be taken with regard to any target of investigation—the physi-

cal, design, and intentional stance.38 The reader may have been reminded 

of Dennett’s picture, in my account of explanatory pluralism, whereby 

the molecular neurobiologist provides proximate causal explanations of 

an FFA neuron firing, the cognitive neuroscientist refers to an intentional 

relationship with a distal object, and an evolutionary biologist could refer 

to adaptive pressures. The major point of difference is that Dennett starts 

from a metaphysical assumption about what minds fundamentally are—

that they are complicated physical systems (Dennett 1988, 495)—and then 

aims to show under what conditions the positing of representations can 

add predictive and explanatory value. In contrast, my approach does not 

begin with a prejudice against the intentional stance as being less fun-

damental than the physical one, as this would be incompatible with my 

constraint of metaphysical neutrality. Dennett’s three stances form a hier-

archy, whereas my perspectives are on a level footing. The brain is a highly 

complex organ that, like other material objects, can be treated as an ordi-

nary physical object open to causal explanation, but it can also be treated 

as an intentional system and made subject to explanations positing neural 

representations.

37.  Woodward (2014, 702) writes that “from the point of view of a functional approach 
to causation, it is entirely possible that there may be some contexts or domains of 
inquiry in which causal thinking and representation, or at least the kind of causal 
thinking associated with interventionism, are not useful or functional.”
38.  See Dennett (1981/1997), and also Lee and Dewhurst (2021), who introduce a 
“mechanistic stance.”
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Rather than Dennett’s stances, a closer precedent to the pluralism arrived 

at with my account is in the proposal of Wilhelm Dilthey (1894/2010) that 

explanation in psychology either can be conducted in line with the pat-

tern of causal explanation exemplified by the physical sciences or take a sui 

generis approach. Dilthey himself was a neo-Kantian (broadly speaking), and 

it is not coincidental that the egalitarian pluralism that I propose requires the 

rejection of causal realism—this rejection being a feature of the Kantian tradi-

tion of philosophy of science (Price and Corry 2007, 9). Metaphysical neu-

trality also requires that I not stake a claim on whether there really are neural 

representations, independently of scientists modeling the brain in this way. 

An arresting implication of metaphysical neutrality is that no body of neu-

roscientific research can inform us of how the brain is “in itself.” This is the 

conclusion to be explored in chapter 7, in which we consider the pluralism of 

modeling perspectives within neuroscience of the motor cortex.
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Die Natur ist nur einmal da. Nur unser schematisches Nachbilden erzeugt gleiche 

Fälle.

—Ernst Mach (1910, 230)1

Socrates: Then how can that be a real thing which is never in the same state? . . . ​

Nor yet can they be known by anyone, for at the moment that the observer 

approaches, then they become other and of another nature, so that you cannot 

get any further in knowing their nature or state, for you cannot know that which 

has no state.

—Plato (1961)

Change is the ever-present, constant thing in the appearance of the natural 

world. The seasons, the tides, the clouds, maturation and decay—all inces-

santly cycling through in patterns that never exactly repeat. The world that 

we inhabit is a flowing world in which nothing is permanent, time erodes 

everything, and gives birth to all new things. Yet, in the Cratylus, we have a 

dismissal of the Heraclitean philosophy of flux, opposing the real and per-

manent to the changeable and merely apparent. What is more, changeable 

things without any fixed state could not be known. Knowledge, properly 

speaking, is of the forms, which are beyond the reaches of time, more like 

the celestial bodies that shine more constantly and revolve with more per-

fect periodicity than anything in the sublunary realm.

The epistemological projects of modern, exact science, no less than those 

of the Platonic philosophy, need fixed targets. Mathematical physics (not 

1.  From the 1882 lecture, “The Economical Nature of Physical Enquiry”: “Nature is 
but once there. Only our reflexion produces equal cases.” (Translation from Banks 
2004, 29; emphasis in original.)

7  The Heraclitean Brain
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coincidentally a discipline that originated in astronomy) sets itself against 

the changeableness of worldly events through the inscription of eternal 

laws that predict those occurrences. The reality claimed to be discovered by 

means of such inquiries is knowable by virtue of its stability. With these tools 

in hand, nature is rendered predictable, and hence controllable, at least in 

principle. Attendant to this approach is a lack of intererst in the particularity 

of things, a mindset that Cassirer (1929/1957, 409) contrasts with that of the 

historian, for whom all events are essentially unique:

Even where the physicist describes a single event, confined to a definite situation 

in space and moment in time, he is not concerned with the particular as such, but 

considers it under the aspect of its repeatability.

A message of this chapter will be that mathematical neuroscience, just as 

much as physics, has this drive toward the framing of events as repeatable, 

and hence as the reflection of objects of knowledge that are essentially stable. 

This is yet another aspect of the need to make things simple which, as this 

book argues, has profoundly shaped neuroscience. Temporal heterogeneity, 

as was noted in chapter 1, is one way in which the brain is exceedingly com-

plex; abstracting away from its instability is one way to simplify the brain.

The importance of this methodology can be appreciated without commit-

ment to the ontological picture of real stability underlying apparent change-

ableness. Mach, for instance, was skeptical that exactly repeating events 

ever occurred in nature, but this did not undermine the power and utility of 

physical laws as schematic, economical representations of that flow of events 

(Banks 2004, 24–25). For Henri Bergson, there was a general point here about 

the scientific intellect, which is that in its representations, especially of living 

beings (we might say “models” where he says “signs”), we have freeze-frames 

of a mobile actuality. The ultimate purpose of this substitution is pragmatic 

because the application of this fixative brings objects more easily under con-

trol: “Signs are made to dispense with this effort by substituting, for the mov-

ing continuity of things, an artificial reconstruction which is its equivalent 

in practice and has the advantage of being easily handled. . . . ​What is the 

essential object of science? It is to enlarge our influence over things” (Bergson 

1907/1944, 358).

In this chapter, I will argue that the brain is Heraclitean in its never-exactly-

repeating richness. Although the Heraclitean character of the brain is there 

to be observed, it is not theorized as such, since theoretical and modeling 
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approaches are founded on assumptions of there being some level at which 

stability is present in the brain, there to be uncovered. Section 7.1 will review 

recent observations of how neural structures and properties once thought to 

be stable—including ones underlying long-term memories—turn out to be 

quite labile. The case study presented in section 7.2 describes a long running 

controversy over the motor cortex. I will show how approaches to meet-

ing the challenge of this temporal complexity have structured mathematical 

frameworks for modeling the functionality of motor cortex. Embedded in 

each modeling perspective are various assumptions about how best to sim-

plify the brain, and in section 7.3, I present some more general implications 

for understanding perspectives in the philosophy of science as strategies for 

simplification. Given that no perspective can encompass the brain in its full 

Heraclitean complexity, does it follow that there are nonperspectival truths 

about the motor cortex (and by extension, the primate brain) that are off-

limits to neuroscience? In section 7.4, I voice support for this conclusion and 

advocate for a Kant-inspired (as opposed to a Platonic) assessment of the role 

of mathematical abstraction in science.

7.1  The Ever-Changing Brain

An article published recently in the Atlantic has a title that sounds sarcastic 

(though not, I think, intended as such): “Neuroscientists Have Discovered a 

Phenomenon That They Can’t Explain” (Yong 2021). The piece is all about 

observations of representational drift, the tendency of the neural activations 

correlated with task-related stimuli, actions, and cognitive variables (Rule, 

O’Leary, and Harvey 2019, 141)—which we saw in chapter 6 are ordinar-

ily conceived as neural representations—to change their distal targets in the 

course of time. For example, the centerpiece of the Atlantic article is a publi-

cation by Schoonover et al. (2021) on the mouse olfactory cortex. The group 

recorded the activity of well-isolated neurons over a period of thirty-two days. 

During the experimental sessions, mice were presented with a panel of four 

or eight different odor stimuli, seven times a day, every eight days. While 

the recordings taken within one day showed neurons to have a consistent 

response to repeated presentations of the same odorant, measurement eight 

days later would reveal a departure from the stimulus-evoked response that 

had occurred previously. Since a strong response to an odorant is interpreted 

as the neuron representing that particular smell, the finding that neurons’ 
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stimulus preferences change in the course of days and weeks is taken as an 

indication that the representations of these odors are drifting around, lacking 

stable associations between certain neurons and particular odorants.

Representational drift has also been reported in mouse visual cortex 

(Deitch, Rubin, and Ziv 2021), in mouse posterior parietal cortex, where neu-

rons represent stimulus-action pairs during a spatial navigation task (Driscoll 

et al. 2017), and with the place cells representing the animal’s location in 

mouse hippocampus (Ziv et al. 2013).2 Although such results are not par-

ticularly surprising for many neuroscientists, they do contrast with the pic-

ture of sensory cortex neurons being “fixed filters,” having receptive fields 

and trigger features that are stable following the critical periods of early life. 

An instance of that idea is the standard model of the primary visual cortex 

discussed in section 5.1 of chapter 5. Likewise, areas of the brain involved 

with navigation and motor coordination have also been assumed to be fairly 

fixed in terms of the neural activations associated with distal landmarks and 

targets.3

One reason to think that the brain would be quite stable in adulthood is 

that the population of neurons, unlike the cells of other organs such as the 

liver, does not turn over, and we rely on the same set of neurons through-

out life.4 Neuroplasticity, of course, is associated with learning, and on the 

picture of a relatively stable brain, this would be due just to changes in con-

nection strength between neurons, the upregulation and downregulation of 

2.  In this case, the place cells retained their preferences for particular locations, but 
only 15–25 percent of the cells involved with place representation on one day would 
be active in the next recording session. See Rule et al. (2019) for a review of studies on 
representational drift. Liberti et al. (2022) and Sadeh and Clopath (2022) argue that 
much of the drift in responses can be accounted for as modulation due to changing 
behavioral patterns and attentional states in the animals.
3.  There is an interesting comparison to be made with modern electronic computers, 
where, for reasons of efficiency, the physical tokens associated with a symbol type 
are constantly being updated (Sprevak 2019, section 3); arguably, the same efficiency 
gains from representation remapping are to be expected in neural systems. However, 
the increased difficulty of reverse engineering a free-floating representational scheme 
may be what pushed neuroscientists toward the optimistic working assumption that 
representations are fixed.
4.  See Chambers and Rumpel (2017). Of course, some neurons do die and adult neu-
rogenesis does occur in certain brain areas—something once thought not to happen 
at all (Snyder 2019). Still, the point holds that there is not the wholesale replacement 
of neurons, equivalent to the turnover in cells in other parts of the body.
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synapses through long-term potentiation (LTP) and long-term depression (LTD).5 

Memories would therefore persist through the persistence of a cell assembly, 

a set of neurons connected together in a particular way. This more static pic-

ture stands against an emerging view of the brain as dynamic and constantly 

undergoing reconstitution and reorganization at subcellular, synaptic, and 

population levels. Surprisingly enough, the synaptic connections between 

neurons, including ones underlying memories that can last almost a life-

time, are constituted by dendritic spines and axonal boutons that come in 

and out of existence, and change in size, over various timescales ranging 

from days to years (for a review, see Chambers and Rumpel 2017, 173–175). 

While turnover rates for these structures vary depending on brain area and 

cell type, it cannot be the case that memories have the persistence that they 

do because of the changelessness of the physical medium in which they are 

inscribed. Our fading memories are less like etchings in stone, ground down 

after years of slow weathering, than transient patterns that produce copies 

of themselves, with fidelity eventually lost as distance increases from the 

original.

The trend toward more attention to the instability of the brain is prob

ably in large part due to the more recent availability of methods for long-

term monitoring of subcellular structures and for recording activity of the 

same individual neurons across extended time periods, which is itself a sig-

nificant technical challenge. When neurons are viewed through one small 

temporal window, it is easy enough to assume that this snapshot represents 

a steady state of the system. But when observations occur across a greater 

stretch of time, the evidence for reorganization is available and undeniable. 

It is interesting that these findings of instability are often offset by those of 

robustness in other neurophysiological parameters,6 and an overall stability 

5.  As Trachtenberg et al. (2002, 788) observe, additional ways for connectivity to change 
are through the generation and elimination of synapses (i.e., sprouting and removal 
of dendritic spines), and through new growth of axonal and dendritic processes. In 
this study, they observed the former, but not the latter, in adult mouse somatosensory 
cortex.
6.  The point here is that there can be consistency of function (e.g., the role played by 
a neuron within a particular circuit), in spite of underlying fluctuations in cell com-
ponents and their activities (Marder, O’Leary, and Shruti 2014). And see Chirimuuta 
(2017a) on how there is a need for different accounts of robustness in organisms, as 
opposed to machines, given these dynamic characteristics.
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of behavior that belies this underlying neural instability. As will be discussed 

in section 7.2.2, there are various findings of population profiles being more 

stable than single neuron properties, which may account for the behavioral 

consistency (Montijn et al. 2016).

An implication of these various observations is that the brain is an organ 

that maintains itself and orchestrates behavior only by undergoing con-

tinual change. That is, it is more of a process than a static thing—a Heracli-

tean object. John Dupré (2012) has argued that all living organisms should 

be characterized in this way, as processes rather than entities. Indeed, the 

changeability of the brain is a direct consequence of being made of living 

tissue. Neurons, like other cells, are always changing their makeup as they 

metabolize: “Each neuron is constantly rebuilding itself from its constitu-

ent proteins, using all of the molecular and biochemical machinery of the 

cell” (Marder and Goaillard 2006, 563). In addition, Peter Godfrey-Smith 

(2016a) proposes that the Heraclitean nature of biological cells has impor

tant implications for how we understand cognition. The essential plasticity 

of neural tissue was an important difference between brains and comput-

ers, as discussed in section 4.4.2 in chapter 4. The idea is that the inherent 

changeability of biological tissue was leveraged during the evolution of the 

nervous system as a means for learning and coping with the challenge of 

staying alive in an unstable world, and remains an important factor behind 

the functionality of the brain. This, Godfrey-Smith argues, puts limits on 

the functional equivalences between brains and computers.

Not only is changeability a pervasive feature of living cells, but many of 

these changes can be considered to be adaptations to external circumstances. 

It is characteristic of living cells, including single-celled organisms, for past 

occurrences to alter activity going forward, and these forms of plasticity are 

related to epigenetics, modulation of the cell’s genetic readout due to events 

in the organism’s lifetime. Bateson and Gluckman (2011, 43) write, “The cen-

tral elements underlying many forms of plasticity are epigenetic processes, 

and plasticity operating at different levels of organization often represents 

different descriptions of the same process. Underlying behavioral plasticity 

is neural plasticity and underlying that is the molecular plasticity involving 

epigenetic mechanisms.”

Without getting into the semantics of whether a single-celled organism 

can have “memory,” the important point is that memory, as we under-

stand the concept from human and animal psychology, is at the very least 
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continuous with and dependent on the existence of such basic capacities 

for adaptation.7

I will conclude here by reiterating the point that exact science needs fixed 

targets. Given the observations reviewed in this section, it would seem that 

making a fixed target of the ever-changing brain would be like pinning jelly 

to a wall—except that scientists have ways of devising fixatives. Chapter 5 

described concrete experimental methods for making neural responses less 

variable than they otherwise would be. With modeling, things can be crystal-

ized even further. Such strategies will now be discussed in relation to research 

on the motor cortex. This field of neuroscience is a particularly apt because 

there has been a long-standing and often heated dispute over what the func-

tion of the motor cortex actually is, leading the neuroscientists themselves to 

be explicit in stating and arguing for their different theoretical perspectives. 

Furthermore, neurophysiologists recording from this area have long been 

aware of the instability of the single neural correlates of bodily movements, 

and this has been a source of the difficulty on reaching consensus on the func-

tional interpretation of motor cortex (Rokni et al. 2007; Scott 2008).

7.2  Perspectives on the Motor Cortex

Motor cortex holds a prominent position in the history of neurophysiol-

ogy, being the first area from which it was found possible to elicit behavioral 

effects—muscle twitches and fragments of recognizable bodily movements—

from the application of electrical current to the surface of the brain.8 It is also 

7.  Ginsburg and Jablonka (2019, 462) write:

Neurobiologists have realized that they need to consider not only synaptic memory but also 
the epigenetic memory embedded in the cell nucleus and the transmission of ‘memory mole-
cules’ between neurons (and other cells); these memory molecules include small RNAs, which 
can alter both the nuclear epigenetic memory within neurons and the synaptic connections 
between neurons. Thus, there are additional biochemical memory systems in the nervous 
system, not just the well-studied synaptic one, and although these mechanisms interact, they 
can be semi-independent, with nonlinear interactions. If we want to understand learning and 
memory in neural organisms, we need to consider all these mechanisms. Crucially, the epige
netic mechanisms of cell memory are very ancient; they preceded the evolution of neurons 
and are found in all living organisms.

Also, see Gershman et al. (2021) on the evidence for Pavlovian conditioning in 
the single-celled paramecium.
8.  See Fritsch and Hitzig (1870) and Ferrier (1873); also see Young (1990).
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one of the first regions to be theorized in terms of neural representations and 

cortical maps (Chirimuuta 2019). Yet in spite of it being one of the earliest 

brain areas to be subject to electrophysiological investigation, and to receive 

a recognizably modern theory of its function in terms of it representing the 

body and its movements, the motor cortex is also one of the most contro-

versial parts of the brain, subject to continuous debate over the most basic 

questions about its functional role as a center crucial for the execution of 

movements.9

Control of muscles, and therefore movement, was perhaps the origi-

nal driver of the evolution of nervous systems (Keijzer 2015). The body’s 

motion occurs in environments that are themselves moving and recon-

figuring, which means that motor control must be flexible and adaptive. 

The brain’s signaling to the muscular system cannot be a rigid set of com-

mands; it must incorporate some Heraclitean characteristics of the sur-

roundings in which the body operates, and will be highly integrated with 

the sensing of the body and of the effects of the body’s movements on the 

things around it. And yet theoretical neuroscience, in work that aims at 

mathematical models of the workings of the motor cortex, has been driven 

to abstract away from the inherent dynamism of this brain-body system. 

In this section, we will examine two traditions of research on motor cortex 

(one older, the other more recent), which posit some stable representa

tions or command patterns, either at the single neuron or at the popula-

tion level. Even though the newer approach uses the tools of dynamical 

systems theory (DST) and would seem by this fact to be attempting to 

represent the dynamism of the brain, it should still be interpreted as the 

attempt to find some stability, and hence simplicity, underlying the chang-

ing appearances.

Cunningham and Yu (2014, 1507) compare these two perspectives in 

terms of their strategies for simplifying the brain:

One of the major pursuits of science is to explain complex phenomena in simple 

terms. Systems neuroscience is no exception, and decades of research have attempted 

to find simplicity at the level of individual neurons. Standard analysis procedures 

9.  In what follows, most of the findings concern primary motor cortex (M1) of the 
primate. Note that the motor cortex contains additional regions (supplementary motor 
cortex and premotor cortex), and that the role of the motor cortex is thought to be dif
ferent in other mammalian groups, such as rodents.
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include constructing simple parametric tuning curves and response fields, analyzing 

only a select subset of the recorded neurons, and creating population averages by 

averaging across neurons and trials. Recently, studies have begun to embrace single-

neuron heterogeneity and seek simplicity at the level of the population as enabled 

by dimensionality reduction.

I will now say more about these contrasting approaches and methods.

7.2.1  The Neuron Stability Perspective

The first perspective on the motor cortex is comparable to the fixed-filters 

model of the visual system.10 The core assumption is that individual neu-

rons represent or encode some parameters relevant to movements in spe-

cific body parts—these may be individual muscle contractions, sequences 

of muscle activations, or higher-order parameters such as the velocity of an 

arm movement. Neurophysiological experiments seek correlations between 

neural activations and the precise movement parameters, although in prac-

tice different kinds of parameters (e.g., direction and velocity) tend to be 

correlated with one another. Therefore, one of the major difficulties for this 

approach has been that neurophysiological recordings have yielded partial 

evidence for various hypotheses about what the motor cortex encodes, lead-

ing to a proliferation of versions of this perspective, without consensus.11

Within this tradition, trial-to-trial variability in neuronal responses is clas-

sified as noise rather than as variance to be modeled and explained. This is in 

part because of the assumption that the neurons’ tuning properties are fixed, 

so variability in responses is not coding anything, and also because the trial-

to-trial variability is beyond the scope of the experimenter’s interests and 

ability to seek explanation. However, the fact that there is a wide variety of 

activity patterns across neurons, as well as instability of movement parameter 

encoding of a single neuron across experimental conditions, has been a 

continual bugbear of this approach (Gallego et al. 2018, 2). The individual 

10.  That is, the idea that individual neurons in the visual system selectively respond 
to a particular kind of stimulus or “trigger feature” (e.g., a small edge of a certain 
width and orientation), and these tunings are stable across time—independent of 
task and stimulus context (see section 5.1.3 in chapter 5).
11.  “Most theories of M1 function over the past 50 years have focused on different 
time-independent movement parameters such as force, direction, velocity, position, 
speed, acceleration, or combinations of these that might be encoded in the firing 
rates of individual M1 neurons” (Omrani et al. 2017, 1832).

Downloaded from http://direct.mit.edu/books/book-pdf/2345162/book_9780262378628.pdf by guest on 25 March 2024



192	 Chapter 7

neuronal responses are just not as stable and homogenous as demanded by 

the hypothesis that they encode specific movement parameters.

It is important to appreciate that there are both single-neuron coding and 

population code versions of the neuron stability perspective. For example, 

Evarts (1968) recorded the activity of pyramidal tract neurons of the motor cor-

tex of head restrained monkeys performing voluntary hand movements for a 

juice reward. The responses of individual neurons were interpreted as encod-

ing force exerted by muscles in the wrist rather than the displacement of the 

hand through space. An influential version of the population approach came 

with the population vector model of Georgopoulos et al. (1986). The idea is 

that each single neuron has a preferred direction of movement for a particu

lar body part, which can be discovered through neurophysiological observa-

tion of the firing rate associated with, say, an arm moved laterally at a range 

of angles (see figure 7.1). At the same time, the actual movement undertaken 
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Figure 7.1
The cosine tuning model treats each motor cortical neuron controlling arm move-

ment as firing maximally at its preferred direction of movement, with firing rate 

dropping away as a cosine function for nonpreferred directions. See Georgopoulos 

et al. (1982) and So et al. (2012).
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by the arm is determined by the combined firing rates of a population of 

neurons. The population vector, which gives the angle of movement to be 

made by the arm, is the sum of each neuron’s preferred direction, weighted 

by the strength of its firing rate.

The population vector model, with its assumption that motor cortical 

neurons code for direction of intended movements, has found a practical 

application in brain-computer interface (BCI) technologies, that record from 

about 100 neurons in this brain region and employ decoding algorithms on 

the data to derive signals for controlling a robotic limb or cursor on a screen 

(Velliste et al. 2008). However, it does not follow from the fact that direc-

tion of movement can be decoded from M1 data, using the population vec-

tor model, that the assumptions of this model are true. Certain assumptions 

made by the decoding algorithms have been shown to be false with respect 

to neurophysiology of the motor cortex, but during the BCI experiments, 

the brain adapts to biases introduced by the models (Koyama et al. 2010; 

Chirimuuta 2013).

While there are both single-neuron and population-code versions of the 

neuron stability perspective, the core assumption that covers them all is that 

individual neuronal activity says something meaningful about the move-

ment that is being or is about to be performed. In other words, by itself, it 

represents some property of the movement undertaken—the part of the body 

involved, its angle, force, or speed. The newer, alternative perspective drops 

this assumption and insists that single-neuron activations are not inherently 

meaningful. Instead, it is only in populations of cells within motor cortex 

that control signals and movement representations will be found. I call this 

the population pattern approach because its working hypothesis is that stabil-

ity and regularity—regarding the relationship between neural activity and 

bodily movement—will be discovered only at the population level. This is 

how Gallego et  al. (2018, 2) describe the difference between the old and 

newer approaches:

An intriguing alternative [to the traditional approach] is that the computations 

involved in generating movement are not based on the independent modulation 

of single neurons, but rather performed at the population level by networks of 

interconnected neurons whose coordinated activity commands the muscles that 

cause the behavior. In this view, correlates between single neuron activity and 

behavior are epiphenomenal, and yield only a limited and distorted view of the 

causal relation between M1 activity and behavior.
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With this, they dismiss the viability of the theories and models of M1 

based on single-neuron recordings—these observations could give only a dis-

torted view, and the theoretical houses would only be built on sand. Thus, it 

is a feature of the newer perspective that single neurons lose their privileged 

status. Even though activations of individual neurons will still be recorded, 

the difference is that no attempt will be made to interpret individual neu-

ronal responses in the way shown, for example, in figure 7.1. Indeed, it is a 

prediction of the population pattern perspective that the firing patterns of 

many of the individual neurons will not be interpretable in terms of external 

parameters (Omrani et al. 2017, 1835).

7.2.2  The Population Pattern Perspective

The shift to the population pattern perspective on M1, as with the big data 

ethological approach to primary visual cortext (V1; see section 5.2 in chap-

ter 5), has been fostered by the invention of methods for large-scale popula-

tion recordings and statistical techniques for analyzing the massive data sets 

produced by such experiments. Whereas the empirical support for the neu-

ron stability perspective comes in the form of single-neuron tuning curves 

for movement parameters, the new view has relied on neural population 

data, processed to show low-dimensional structure. These kinds of data anal-

yses have become common elsewhere in neuroscience with the increase in 

number of neurons simultaneously recorded. If the activity of 100 neurons 

is observed during one experimental trial (e.g., an arm reach), the resulting 

data set has 100 dimensions (one neuron per dimension). But given the 

correlations between neurons’ activation patterns, dimensionality reduction 

techniques such as principal component analysis (PCA) or factor analysis 

can typically fit the data into about a ten-dimensional space.12

In addition to dimensionality reduction methods, the framework of DST is 

brought in for further analysis of the role of population activity in movement 

coordination. DST originated with a study of celestial mechanics by physicist 

Henri Poincaré (1890). In its short history, it has been applied very widely 

to describe the evolution of complex systems, also known as chaotic systems 

(Mitchell 2009a, chapter 2). An application within biology, well known to 

12.  Cunningham and Yu (2014) is a clear exposition and review of such methods.
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philosophers of science (e.g., Weisberg 2013), is the Lotka-Volterra model of 

the coupled, cyclical growth and decline of predator and prey populations.

Even though DST is the theory of changing systems, ones undergoing 

some alteration (depicted as a journey through their state space), the whole 

point of the analysis in a certain sense is to reduce change to stasis, for the 

trajectory that the dynamical system takes through its state space is attrib-

uted to there being some fixed parameters of the system and a changeless 

set of laws governing it. This is a point made by Walsh (2015, 212), regard-

ing what he calls “object theories”:

In an object theory, the domain of interest is a set of objects. The goal of the the-

ory is to describe and explain the dynamics of these objects. So, we set out a space 

of possible alternatives for those objects—a state space—and we look for princi

ples that might account for various possible trajectories through the state space. 

The objects in the domain are subject to forces, laws and initial conditions. . . . ​

[W]e describe the dynamics of a system by answering two simple questions: 

“(i)  what are the possible configurations of the system? and (ii) What are the 

forces that the system is subject to in each configuration?”. . . . ​The principles 

that govern the dynamics of the objects in the theory’s domain are not part of 

the domain itself. They do not evolve as the system under study does. The laws 

of nature, and the space of possibilities through which the objects move remain 

constant as the objects change. In this way, we can explain the change state of the 

system under study by appeal to the unchanging laws.

As with the orbit of a planet, the dynamics of motor cortex are represented 

by plotting the activity of the neural population as a trajectory through a 

low-dimensional state space. To the extent that the equations describing the 

evolution of the systems are taken to be fixed, what this analysis achieves is 

the transformation of the restless motion of the planets, or the motor cor-

tex, into a snapshot, a formalism, that contains this movement all at once.13

Some presentations of the dynamical approach have insisted on it being 

antirepresentational, in line with dynamical theories of cognition that seek 

to dispense with the positing of mental representations (e.g., Chemero 

13.  Note that the equations describing the systems need not be assumed to be fixed. 
There could be versions of the dynamical approach to motor cortex that allow for 
their evolution as well. In that case, the reduction of dynamics to changelessness 
would not go through. I thank David Robbe for this point. See also Barack (2019, 
2020) on neurodynamical explanations.
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2011).14 In such cases, one way to summarize the difference between the 

older, neuron stability perspective and the new one is to say that the relation-

ship of causation (between neurons and bodily movements) has replaced an 

representational (intentional) relationship. While all agree that motor corti-

cal activity is causally upstream of movement, proponents of the antirepre

sentational view do not give the population activity an additional gloss as 

representing some aspect of the intended movement; instead, they treat the 

cortex and muscles as coupled oscillatory systems and ask how the cortex 

orchestrates its sequence of oscillations (of neural population firing) such 

that they eventually cause an intended sequence of muscle contractions. A 

basic intuition here is that the oscillations in populations of cortical neu-

rons, at different frequencies and phases, are analogous to a Fourier basis 

set of sine waves, from which any irregular waveform can be generated. 

Likewise, firing patterns in the motor cortex constitute a basis set which, 

when appropriately deployed, leads to the execution of the range of bodily 

movements.

However, as various philosophers and cognitive scientists have discussed, 

there is not an inherent incompatibility between DST and the positing of 

cognitive or neural representations.15 So it is unsurprising that versions 

of the population pattern approach have emerged, also using DST, that 

posit that there are features of neuronal population activity that encode 

the parameters needed to control bodily movement. Barack and Krakauer 

(2021) give a strongly representational interpretation of the new perspec-

tive, which they label “Hopfieldian,” in contrast with the older “Sherringto-

nian,” single neuron–based one. They argue that the population trajectories 

thought to explain motor planning are “representational in our more 

full-blooded sense” (Barack and Krakauer 2021, 11). That is, beyond just 

evoking a correlation between an external movement parameter and a neu-

ral activation, these representations are said to have accuracy conditions 

and to be involved in offline motor planning. On Barack and Krakauer’s 

14.  See in particular Shenoy, Sahani, and Churchland (2013) and the discussion of 
Kaufman in Omrani et al. (2017). The antirepresentational one is the only version 
of the population pattern perspective that I discussed in Chirimuuta (2020b). Since 
then, the other versions have become more prominent. Commentators who empha-
size the antirepresentational current are Favela (2021) and Lindsay (2021, chapter 8).
15.  See Clark and Toribio (1994, 422), Beer and Williams (2015), and Weinberger 
and Allen (2022).
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interpretation, the evolution of a trajectory in the low-dimensional state 

space is the transformation of a representation, which is to say that it is a 

computation according to their preferred definition of computation. This 

stands in clear contrast with interpretations of dynamical models in cogni-

tive science, which present them as an alternative to the computational 

theory of cognition (van Gelder 1995).

Another computational and representationalist interpretation of dynam-

ical models of motor cortex comes from Lee Miller’s laboratory. A feature 

of their discussion is the concept of the neural manifold. This is the low-

dimensional portion of the full 100-dimensional neural space that M1 activ-

ity is found to reside in, even across a range of motor tasks (Sadtler et al. 

2014). The basis vectors of the neural manifold are known as neural modes, 

which are “patterns of neural covariance thought to arise from the network 

connectivity” (Gallego et  al. 2018, 2). The crucial part of their interpreta-

tion is that these neural modes capture population activity patterns that are 

thought to be the “fundamental computational units” of the motor cortex. 

As Gallego et al. (2017, 978) also write, “It is the activation of these neural 

modes, rather than the activity of single neurons, that provides the basic 

building blocks of neural dynamics and function.”

What we see is that the search is still on for the elementary units of brain 

operations. In previous chapters, we have encountered earlier contenders like 

the simple sensorimotor reflex and Barlow’s single neurons in visual physiol-

ogy. A difference is that the newly proposed elementary neural modes can 

be defined only at the population level and require some sophisticated data 

analysis for their presence to be determined by the investigator. This is an 

indication that neural modes, no less than the other examples given in this 

book, are ideal patterns whose existence depends as much on the investiga-

tor and their choices in how to analyze experimental data, as on the brain 

activity by itself. But it is interesting that when discussing neural modes, 

these researchers equate the products of the simplifying procedures that they 

themselves have performed with hypothetical simplifications that the brain 

itself is carrying out. For instance, Gallego et al. (2017) report, “These studies 

also suggest that the constraints embodied by the neural manifolds simplify 

movement generation by providing a small number of signals that are indepen

dently controlled to achieve a desired behavior” (980, emphasis added). This 

is asserted even though it is everywhere acknowledged that scientists employ 

dimensionality-reduction methods because it is impossible for people to 
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visualize a 100-plus-dimensional space, and these scientists need a lower-

dimensional representation of their data to reach some intuitions about the 

relationship between movements and neural activations.16

The question of whether neural modes are largely the product of scien-

tists’ efforts to simplify, or indicative of an inherent simplicity in nature (or 

both), relates to an old debate about the interpretation of latent variables (the 

products of dimensionality reduction) in data sets generated by psychomet-

ric testing. Stephen J. Gould was one scientist who warned against the reifi-

cation of latent variables, arguing that the simplified structures found after 

processing data in this way are, by themselves, no more than mathematical 

abstractions and should not be taken to be causes acting in the world, absent 

additional evidence in support of a more loaded interpretation.17

A concern with reification comes to the fore if we appreciate that the 

dimensionality reductions involve loss of information present in the raw 

data. Normally, this is a price worth paying for a representation of the data 

that is far more interpretable in its simplified format.18 But whatever is left 

out of the simplified representation should not be assumed to be insignifi-

cant. An everyday comparison from Lindsay (2021, 239–240) helps make the 

16.  It could be pointed out that in addition to these pragmatic reasons for perform-
ing dimensionality reduction, because of human cognitive limitations, there are some 
more general epistemic ones, indicated by the fact that many statistical methods, 
including machine learning, require dimensionality reduction. (I thank Mark Sprevak 
for this point.) My view on this is that there is not a firm distinction between the 
pragmatic and the epistemic. If nature is infinitely complex—which is the implication 
of Mach’s vision of a nature that never exactly repeats—then any knowledge of it had 
by a finite system (be it a human or a computer performing statistical analyses) must 
involve abstractions such as dimensionality reduction. This knowledge serves the prac-
tical tasks of the finite knower, and should not be mistaken for knowledge of nature as 
it is in itself, in its infinite complexity.
17.  Gould (1981) says, “The first principal component is a mathematical abstraction 
that can be calculated for any matrix of correlation coefficients; it is not a ‘thing’ 
with physical reality. Factorists have often fallen prey to a temptation for reification—
for awarding physical meaning to all strong principal components” (250; emphasis in 
original).
18.  Note that in the M1 population studies, the dimensions found using principal 
components analysis will account for a high proportion, but not all, of the variance in 
the original data set. For example, Gallego et al. (2018, 3) report that a 12-dimensional 
representation accounts for about 75 percent of the variance. It is unknown how much 
of the remaining variance is pure noise (e.g., experimenter introduced, instrument 
noise) and how much is task relevant.
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point. Common personality tests reduce the spectrum of human characteris-

tics to a few dimensions—the “Big Five” latent factors are agreeableness, neu-

roticism, extraversion, conscientiousness, and openness. Lindsay explains 

that these are derived from finding correlations between more fine-grained 

personality traits that normally occur together in one person, such as clever-

ness and quick-wittedness, and collapsing them into one trait, intelligence. 

The point is that the coarse-grained schema will not be able to represent the 

individuals for whom correlations among the fine-grained traits diverge from 

the usual pattern—those who are clever without being quick-witted and vice 

versa. However, Lindsay asserts that the loss of information with dimension-

ality reduction is insignificant, and the fine-grained set of concepts used to 

describe human personality in everyday life is an “overrepresentation.” Like-

wise, Lindsay surmises, neuroscientists should have no compunctions about 

concluding that their reduced representations of neural activity are capturing 

all the essential information about the population.19 In other words, Lind-

say is very quick to reify the latent variables, taking them to be inherent, 

fundamental features of the system itself. Yet, as we find with the individu-

als we know, being quick-witted is different from being clever—it does not 

just amount to one and the same factor, intelligence—and these differences 

matter to us as human beings. Our more nuanced lexicon does not overrepre-

sent human personality. It is just that in our day-to-day dealings with people, 

we do care about individuality. In contrast, psychologists examining person-

ality traits en masse are likely to be indifferent to the details of individuals 

and will find it more convenient to ignore the unusual cases for the purposes 

of their research projects. Similarly, the details around the edges that get left 

behind after dimensionality reduction of neuronal population data may not 

matter at all to the neuroscientist, but this does not mean that they are irrel-

evant in an absolute sense. It could well be that those details matter in subtle 

ways to the functioning of the brain itself. This is the same basic point made 

19.  “Just as our folk notions of personality over-represent its dimensionality, there 
are many reasons why the ‘true’ dimensionality of a neural population is likely to 
be less than the number of neurons in it” (Lindsay 2021, 240–241). There is indeed 
good reason to think that some of the information in the full data set is redundant 
due to the fact that redundancy has to be built into the system so the death of one 
individual neuron does not lead to catastrophic failure. But from this, it does not fol-
low that reduction to the number of dimensions interpretable to a human scientist 
will be one that captures the system’s fundamental behavior in its entirety.
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in relation to the older perspective (section 7.2.1), that neuroscientists may 

opt to classify unexplained variance as noise, and thus irrelevant to the cog-

nitive task; but really, some of it is task-relevant, just beyond the scope of the 

neuroscientist’s interests and ability to handle the system’s complexity.

7.3  Perspectives as Modes of Simplification

Here we are asked to think an eye where the active and interpretative powers 

are to be suppressed, absent, but through which seeing still becomes a seeing-

something, so it is an absurdity and non-concept of eye that is demanded. There 

is only a perspective seeing, only a perspective “knowing.”

—Nietzsche (1887/1994, iii.12, 92)

In the preceding discussion of research on motor cortex, I have been using 

the term “perspective,” pretty much interchangeably with “approach” with-

out saying what I mean by a scientific perspective or perspectivism—the atten-

dant philosophical view about the nature of scientific knowledge. There 

are various characterizations available in the recent literature.20 A shared 

feature of the different versions of perspectivism is, as Massimi Massimi 

(2018c, 166) puts it, “the acknowledgement of the human vantage point 

(as opposed to the God’s eye view) from which only knowledge of nature 

becomes possible for us.” The prominent feature of my account of perspec-

tivism is that I insist on simplification being the process through which 

knowledge of nature becomes available to scientists. It is, if you like, the sci-

entist’s especially refined sensory modality.21 It follows that perspectives, as 

research traditions, should be understood as coherent collections of experi-

mental and modeling practices, theoretical and conceptual frameworks, all 

working together to present an object of investigation in an appropriately 

simplified, and hence knowable, way. In the cases presented in this chap-

ter, the old perspective cohered around the assumption that individual neu-

rons encode motor parameters in a stable and interpretable way; the newer 

20.  See Giere (2006a, 2006b), Massimi and McCoy (2020), and Massimi (2022).
21.  I do not mean to imply that other modes of knowledge do not also employ sim-
plifications, just that this characteristic of all propositional knowledge, even simple 
linguistic descriptions of states of affairs where there must be abstraction from the 
concrete particulars, is particularly exaggerated in science. Science stands apart for 
the technical ingenuity and intellectual energy that it puts into its simplifications.

Downloaded from http://direct.mit.edu/books/book-pdf/2345162/book_9780262378628.pdf by guest on 25 March 2024



The Heraclitean Brain	 201

perspective—still somewhat under construction—makes a comparable 

assumption regarding patterns of population activity. Likewise, we saw in 

chapter 3 that the perspective of reflexology was defined by the assumption 

of simple reflexes being the stable, elementary units of the nervous system, 

and in chapter 4, that the computational approach itself offers a simplified 

view on the brain—one in which spike patterns are postulated to be the only 

events relevant to cognitive functions and are examined in isolation from 

the complicated background of all the other electrical and chemical activity 

that takes place in the brain.

It is not at all controversial that science thrives when complicated things 

can be made to seem simple. Various authors have made the case that com-

plex systems, especially those studied in the biological and behavioral sci-

ences, afford modeling from a variety of perspectives because no one set of 

theoretical handles or experimental practices gives the scientist access to 

all the relevant phenomena in the domain of interest.22 I build on this work 

by emphasizing not only the way that scientific perspectives passively filter 

out details not relevant to their own theory and practice, but also the way 

that they actively impose simplifying assumptions onto the target system. 

The active side of this process is what constructivist notions of scientific 

knowledge often allude to, and it comes to the fore if our understanding of 

perspectivism begins with consideration of the distance between the com-

plexity of the world and the simplicity needed so that scientific representa

tions can be useful. This is how Giere (1999) puts it:

Rather than thinking of the world as packaged in sets of objects sharing definite 

properties, think of it as indefinitely complex, exhibiting many qualities that at least 

appear to vary continuously. One might then construct maps that depict this world 

from various perspectives. . . . ​Here we have a way of combining what is valuable in 

both constructivism and realism. . . . ​We can agree that scientific representations 

are socially constructed, but then we must also agree that some socially constructed 

representations can be discovered to provide a good picture of aspects of the world.

(26, quoted in Plutynski 2020, 161)

The key question here is what counts as a “good picture” of some aspect 

of the world. The answer offered by haptic realism, which I couple with per-

spectival pluralism (see section 2.1 in chapter 2) is that we should avoid the 

22.  See for instance, Mitchell (2003), Mitchell and Gronenborn (2017), Longino 
(2006, 2013).
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notion of correspondence (between the scientific representation and mind-

independent nature) and its ideal of pictorial accuracy. Instead, the suitabil-

ity of a map is determined both by constraints coming from the domain it 

represents and by the demands placed on it by its eventual users. Scientific 

representations are the result of an interaction between human mapmakers 

and the territory they seek to navigate. Both participants in this interaction 

leave an ineliminable impression on the representation produced. Hence, 

science can never rise above the ground-level humanity of its makers. It can 

never achieve a God’s-eye view.

In short, my preferred way to characterize scientific perspectives is as bets 

on how best to achieve productive simplifications. In this chapter, I have 

focused on the kind of complexity that comes with changeability—the tem-

poral heterogeneity of the brain, the fact that neural systems are never in 

the same state twice. The correlative notion of simplicity is therefore sta-

bility. Neuroscientists have simplified the motor cortex through different 

idealizing assumptions about which properties of neurons and neuronal 

populations remain fixed. There are further questions that versions of per-

spectivism are normally presented with, questions about the relationship 

between perspectives: Are they competitors or complementary to one another? 

Could one perspective ultimately subsume the others? Is perspectivism just a ver-

sion of relativism? What is truth, according to perspectivism? This is not the 

place to delve into all these matters, but I will briefly indicate how atten-

tion to the Heraclitean complexity of biological objects points toward some 

interesting answers here.

Expectations for some kind of convergence of perspectives are associ-

ated with versions of perspectivism that are closer to traditional scientific 

realism (Massimi 2018a). Indeed, some traditional scientific realists have 

charged perspectivism with not being a distinctive enough position, pre-

cisely because it seems easy enough to take different perspectives merely 

as partial views on one underlying reality that could in principle be uni-

fied once the partiality of each viewpoint is better understood, as in the 

parable of the blind men and the elephant. One maneuver that aids the 

traditional realist here is to assert that the basic properties of the entities of 

mind-independent reality are dispositional ones, which manifest in various 

ways depending on how the scientist choses to probe her object of inquiry 

(Chakravartty 2010). It follows that the dispositional properties of the one, 

mind-independent object of inquiry get manifest in different ways within 
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the different scientific perspectives, but in principle, there could be conver-

gence, and truth could amount to achievement of an adequate correspon-

dence with these mind-independent dispositional properties.

However, Chakravartty (2017, chapter 4) now argues that the positing of 

one set of dispositional properties underlying all the perspectives and afford-

ing in principle unification is a purely metaphysical one and cannot be in any 

way confirmed or disconfirmed empirically. I emphasize, in addition, that this 

move stands in denial of the view presented in this chapter that the brain, like 

other living systems, is a thing that is inherently changeable. The supposi-

tion of a substratum of stable dispositional properties underlying the variable 

observations is a concession to the thought voiced at the outset of this chapter 

that fundamental reality must be changeless, in spite of how things appear, in 

order to be and to be knowable.

Nietzsche, who along with Kant is often put forward as an instigator of 

perspectivism, is an oddly relevant interlocutor at this juncture. For him, the 

notion of truth dominant in the history of philosophy from Plato onward 

was one that set its sights on a mind independent, changeless reality, hold-

ing a supreme position over the flux of appearances. For Nietzsche, this “will 

to truth” was the core of an ascetic ideal that was inherently life-denying. As 

Poellner (2000, 7) puts it, the “other” that this ascetic ideal negates or deval-

ues is, “life—which means, among other things, that realm of continuously 

changing, sensible particulars which confronts us in everyday experience.” 

The thing we might conclude here is that in taking the changeableness that 

neural and other living systems present under observation to be basic, not a 

degraded mode of existence, not a mere becoming that we distinguish from 

true being, we must also give up on the venerable ideal of eternal truths, 

toward which the best science approaches.

This is not the place to give alternative positive proposals for a new notion 

of perspectival truth. I will just note, briefly, that the main position to be 

unsettled here is the idea of reality already carved into determinate struc-

tures, essences, and forms, which can be fully apprehended in a passive way 

by the knower.23 In its full complexity, the world overflows all the conceptual 

forms that would make sense to a finite cognizer. The activity of knowing 

23.  What I’m describing here are some tenets of standard metaphysical realism. See 
Anderson (1998) on how Nietzsche and Putnam, both in their own way, reject them, 
leading to perspectivist positions that have a common origin in Kant’s philosophy.
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is that of bringing determinateness to bear on this excess of possible forma-

tions. This is why pluralism is inevitable: there must be more than one way 

to determine pattern in the flood appearances. But while absolute knowledge 

of eternal truths is ruled out, this does not mean acceptance of a relativism 

in which any system of determination—any body of knowledge—is as good 

as any other. As we have seen in this chapter, scientific perspectives can lose 

their viability and be superseded when not sensitive enough to the appear-

ances that they seek to regularize.

7.4  Two Philosophical Perspectives on Mathematical Abstraction

In section 2.1 of chapter 2, I called this position formal idealism, referring 

to Kant’s rejection of formal realism, Aristotle’s vision of a natural world 

already delineated into a taxonomic scheme of beings with their various 

essences. To close this chapter, I will discuss how the contrast between for-

mal idealism and formal realism applies to the distinction between Kantian 

and Platonist positions on the status of mathematical abstractions in natu

ral science. It is interesting that the word “abstraction” bears two different 

meanings in contemporary philosophy—one lofty, the other mundane. In 

the lofty sense, an abstraction is an abstract entity, not spatially and tempo-

rally located, and as such possibly residing in Plato’s heaven. Speaking mun-

danely (the use more common among philosophers of science), abstraction 

is synonymous with simplification and paired with idealization—an impor

tant model-building strategy employed by earthbound scientists. These two 

conceptions of abstraction animate two very different explanations for the 

“unreasonable effectiveness of mathematics”—that is, they provide two dif

ferent answers to the question of why quantification is such a useful tool 

in science. The lofty explanation is that the underlying reality of nature 

consists in mathematical structures, and the task of the exact sciences is to 

discover these. The mundane one is that science progresses when humans 

find ingenious ways to simplify complex domains, and mathematics is the 

preeminent means for doing this.

Adherents to the lofty way of thinking about abstraction and the role of 

mathematics in science are in good company—not only Plato, but Galileo 

(stating that the book of nature is written in the language of geometry), 

Descartes (and other rationalist philosophers), and contemporary ontic 
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structural realists have intellectual kinship here. However, this Platonic 

tradition meets difficulty with the existence of pluralities of different kinds 

of mathematical representation of natural occurrences, examples much dis-

cussed in the literature on perspectivism in science.24 If the construction 

of a predictively powerful model of a target system is also, in some sense, 

a revelation of the mathematical laws that underlie it, then how can it be 

that the book of nature seems to be written by multiple authors?

Kant is a figurehead for the mundane approach. Instead of taking abstract 

mathematical representations to be revelations of a mind-independent real

ity, we hold them to be a set of structures employed by human minds to reg-

ularize the many observations of natural occurrences.25 When confronted 

with the varying, multifaceted, and ambiguous appearances, mathematics 

offers a useful set of structures for imposing representational order on them, 

especially by omission of details—the process of abstraction. It is not jarring 

or surprising to the Kantian view that there are multiple ways to achieve 

order and abstract; hence, there may be a plurality of kinds of mathematical 

models for the same target of research.26

This way of thinking about abstraction and the scientific method looks 

back to ideas commonplace in philosophy of science a century ago. Even 

24.  See Weisberg (2007) on “multiple models idealization”; and Morrison (2011) on 
the multiple conflicting models of the atomic nucleus. Further, Massimi (2018b) and 
Rice (2020) give responses to the problem of inconsistent models that they claim to 
be compatible with scientific realism.
25.  Note that my characterization of the Kantian tradition does not come with any 
commitment to Kantianism regarding the ontology of numbers or epistemology of 
mathematics. For instance, one could think that mathematics is learned by the mind’s 
apprehension of Platonic forms but still be a Kantian in the sense relevant here—that 
is, by denying that mathematical structures are the truer reality underlying the appear-
ances in nature and asserting that the utility of math in science comes from the mind’s 
ability to “project” certain simple structures onto nature. However, there is a con-
nection between the Platonic tradition I characterize here and Platonism regarding 
the ontology of numbers, in that the indispensability arguments for the existence of 
numbers presuppose the lofty explanation for the success of mathematical science. I 
thank Alastair Wilson for this point.
26.  There is much more that deserves to be said about how the question of the effec-
tiveness of mathematics gets addressed on this viewpoint. My thoughts on this have 
been shaped by Cassirer (1910/1923, 1929/1957), except that I do not think that his 
ideas about scientific progress should be applied to neuroscience.
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if neglected now, I believe they offer significant benefits for thinking about 

perspectival pluralism.27 Not only does it welcome the existence of multiple 

perspectives, it also permits a relaxed response to the possibility of there 

being facts about reality that are in principle unknowable, which is a stick-

ing point for Massimi (2018a, 353). In our case, we can say that the brain-

in-itself is not knowable in its endless, Heraclitean complexity because no 

finite knowers would be able to theorize it completely and accurately as 

such. The brain-in-itself is not mysteriously remote, removed from observa-

tion; it is just excessively complicated. At the same time, the Heraclitean 

brain provides constraints on what counts as an acceptable representation 

of it, and this means that neuroscientific knowledge claims are not merely 

fictitious or relativistic.

It might be objected that the Heraclitean brain, insofar as its instability is 

observed through advanced scientific instruments and protocols, is known 

scientifically. However, collections of observations do not constitute a body 

of scientific knowledge; there has to be systematization and theorization. 

It is with the systematization—which is the result of a theoretical approach 

and modeling perspective—that the full changeability of the brain is taken 

out of the picture. The Heraclitean brain is replaced with a more stable 

counterpart. In the words of Bergson (1907/1944, 366), “Real time, regarded 

as a flux, or, in other words, as the very mobility of being, escapes the hold 

of scientific knowledge.”28

27.  I am thinking here of Duhem (1906/1954), Cassirer (1929/1957), Husserl (1970), 
and Whitehead (1925/1967).
28.  What is shown is that there are limits to neuroscientific knowledge attained 
through the simplifying perspectives of exact science because it must abstract from 
the Heraclitean quality of brain processes. This does not preclude forms of knowing 
or investigating that in some way acknowledge the flow of neural or mental life. In 
the history of psychology, this seems to be the point of William James’s treatment 
of the “stream of thought,” and Dilthey’s (1894/2010) insistence on a “descriptive” 
form of psychology that begins with experience of one’s own life, complementary to 
psychology that borrows the “explanative” approaches of the physical sciences. It is 
interesting that James (1890) makes a neurophysiological argument for the claim that 
felt sensations never exactly repeat: “Every sensation corresponds to some cerebral 
action. For an identical sensation to recur it would have to occur the second time in 
an unmodified brain. But as this, strictly speaking, is a physiological impossibility, so is 
an unmodified feeling an impossibility; for every brain-modification, however small, 
must correspond a change of equal amount in the feeling which the brain subserves” 
(232–233; emphasis in original).
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The purpose of this part of the book is to expand upon the philosophical 

lessons suggested by the case studies of part II. Chapter 8 is about what we 

can learn regarding that most basic question, What is science?, as well as How 

is technology changing science? The final two chapters delve into some classic 

problems in philosophy of mind—the explanatory gap for consciousness 

and mind-body dualism. The payoff of the fixation on abstraction, exem-

plified in this book, is that we can help ourselves to new diagnoses of what 

is at stake in these old debates.

Part III
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Science should be confident that its powers to know are not limited owing to its 

track record of starting at a point no one can question, and going on successfully 

to unify an incredibly diverse range of phenomena under one explanatory “roof.” 

That success has had a never-ending pay-off in technological application. It’s pos

sible that there are limits to science. But it would be foolish to bet there are.

—Alex Rosenberg (2014, 40)

8.1  On Limits

Neuroscience is a frontier science. Interred with this imperialistic dead 

metaphor is the notion that the brain is an expanse of undiscovered coun-

try, little by little succumbing to the advancing forces of scientific exposi-

tion. One notable pioneer of neuroscience, Emil du Bois-Reymond, started 

a controversy, the Ignorabimusstreit, when he voiced the opinion that the 

explanation of consciousness—how the material brain conditions “mental 

facts”—posed an impassable barrier to scientific progress: “Between these lim-

its the man of science is lord and master; he dismembers and builds up and 

no-one durst say wherein his knowledge and his power are circumscribed. 

Beyond these limits he cannot now, nor can ever go” (1872/1874, 29).

The question of limits is not here to be treated as a test for who is a “booster” 

or “naysayer,” “optimist” or “pessimist,” about science and modernity, which 

is normally what happens.1 Instead, I wish to prompt scrutiny into our con-

cept of science, for to set boundaries or limits is to demarcate and therefore to 

1.  See Beiser (2014, chapter 3) on the Ignorabimusstreit, and Churchland (1994) for 
invective against the naysayers.

8  Prediction, Comprehension, and the Limits of Science
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define. The demarcation question familiar to most philosophers of science is 

the one that asks where the boundary between science and pseudoscience is 

to be drawn. I think it is more helpful to examine the border between science 

and engineering.2 The occasion for this inquiry is the recent encroachment, 

as one might call it, of a particular kind of engineering—machine learning—

into the territory of neuroscience. Not only is the engineering of artificial 

neural networks (ANNs) becoming unified with neuroscience, but the success 

of machine learning on challenges not met by more entrenched scientific 

methods has caused many researchers to rethink the aim and scope of their 

discipline. All this will be discussed in section 8.3. Before then, I will pick up a 

line of thought dropped at the end of chapter 5, where it was concluded that 

the slogan “What I have not made, I do not understand” best summarizes 

the role of artifice in neuroscience. Section 8.2 shows how this conclusion is 

reinforced once we consider the interrelationship between science and tech-

nology, especially as it came about in the early modern precursors to current 

science. Section 8.3 is about the impact of machine learning on neuroscience 

today. Finally, section 8.4 expands the argument that the ineliminability of 

artifice in neuroscience is itself a barrier or limit to neuroscientific under-

standing of the brain in all its native complexity. The technology of machine 

learning, as powerful as it is, does not break through this limit.

8.2  Verum Esse Ipsum Factum3

This book has placed simplification at the center of its account of what neuro

science is up to. This occurs not only in the domain of models and other 

scientific representations, but also, as the studies of chapters 3 and 5 showed, 

2.  This demarcation has been usefully discussed within philosophy of biology; for 
instance, see Kastenhofer (2013) on the relationship between systems biology and 
synthetic biology.
3.  “Verum esse ipsum factum” (Vico 1710/1988, 46) means “The intelligible is pre-
cisely what is made.” In the introduction to that text, Palmer (18), Vico’s translator, 
explains:

The formula states an analytical relation, namely, that only as made is something interchange-
able, or convertible, with the true—and thus intelligible to its maker or doer. But it can also have 
some degree of intelligibility to any being who could make or do it. The formula is not a case of 
the correspondence theory of truth. Verum does not mean “true” as the function of a proposition 
(whose opposite is “false”); rather, it means true as intelligible. (Also, cf. Fisch 1969, 407–408).
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in the material arena of experimentation, where we find the production of 

simpler model systems as clearings in the otherwise impenetrable forest of 

neural complexity. To simplify, to make a simpler thing, is an inherently 

constructive and also destructive process. It should not, as I have in various 

places emphasized, be misinterpreted as the discovery of a hidden simplicity 

which was there all along. That the brain houses a latent simplicity, within 

reach of discovery, is probably an idea as fabulous as El Dorado or the mines 

of King Solomon. The benefits of simplification, some discussed in part II of 

this book, are in turns pragmatic and epistemic. Simpler systems are certainly 

easier to manipulate and understand, and I concur with Potochnik (2017) 

that understanding—the felt sense that the processes of nature have been 

made comprehensible (see section 2.2.3 of chapter 2)–is a primary epistemic 

aim of science. By examining the material as well as representational sim-

plifications in the case studies in part II, one sees that these strategies make 

things intelligible to the scientist by making things that are intelligible to the 

scientist.

The end point of chapter 5, that an amendment of Feynman’s saying 

gives a more honest reflection of the operation of neuroscience (“What I 

have not made, I do not understand”), might have seemed too far-reaching 

a conclusion from too small an inductive base. The task is now to show 

that the proposal is reinforced once related to work in the history and 

philosophy of science that has given prominence to the interdependency 

of science and technology. The verum factum is due to Giambattista Vico, 

who thematized the connection between doing, producing, and knowing 

as against what Dewey later called the “spectator” theory of knowledge.4 

Dupuy (2009, 137) writes of cybernetics giving “final expression to the principle 
of Verum et factum convertuntur.”
4.  See Fisch (1969) for a comparison between Vico’s philosophy and American pragma-
tism. See also O’Malley (2009), who takes Feynman to be expressing the same sentiment 
as Vico. Feynman is normally presumed by neuroscientists and synthetic biologists to 
be saying that the ability to create a phenomenon is a prerequisite for the claim to 
understanding it—for instance, “Until we can assemble a form of life in vitro from 
defined, functionally understood macromolecules and small-molecule substrates, how 
can we say that we understand the secret of life?” (Forster and Church 2007, 5, quoted 
in van den Belt 2009, 258). The lesson that I am drawing from Vico, in contrast, is that 
in these disciplines, a thing’s having been created is necessary for the understanding of 
it. According to Landeweerd (2021, 62), this is closer to Feynman’s original intent since 
he was referring to the re-creation of the steps of a mathematical argument toward a 
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Vico’s own application of his maxim was to the point that both geom-

etry and the human-made social world are more fully comprehensible than 

the divinely made natural world; mine is that neuroscience is in its own 

business of producing objects of comprehension as proxies for those natu

ral objects held by Vico to be transcendent. These model systems are, like 

domesticated animals, both natural and artifactual at the same time.

I do not intend to take the verum factum just on the authority of Vico 

(as he held it on the authority of the ancient Italians whose wisdom he 

detected in the etymology of these words). While it may be that there are 

cases from across the sciences for which this epistemology of understanding-

via-making is not apt, it is consistent with an argument made compelling 

by various twentieth-century historians of science that artifacts, not natural 

systems, are the primary and original objects of rigorous theorization, indi-

cating that the reliance on stand-ins for the natural or wild-type system is 

by no means a peculiarity of contemporary neuroscience. This was the the-

sis of Boris Hessen and Henryk Grossmann, who both asserted that science, 

in its most nascent stages, came into being through the study of techno-

logical objects (Freudenthal and McLaughlin 2009, 10). Here is Grossmann, 

who stated:

It is evident that man, in all these technological upheavals, acquired new, important 

material for observing and contemplating the actions of forces. In the machines, in 

the turning of the water wheels of a mill or of an iron mine, in the movement of the 

arms of a bellows, in the lifting of the stamps of an iron works, we see the simplest 

mechanical operations, those simple quantitative relations between the homoge-

neous power of water-driven machines and their output, viz. those relations from 

which modern mechanics derived its basic concepts. (1935/2009, 128)5

Similarly, Paolo Rossi (1962/2002, 56) writes of “the importance that many 

practical problems (e.g. the speed of ships, construction of canals, ballistics, 

manufacture of pumps, ventilation of mines, etc.) came to assume with 

respect to the birth and progress of investigations of a theoretical character 

theoretical result. It is also interesting to compare this with Kant’s saying that, “reason 
has insight only into what it itself produces according to its own plan” (Critique of Pure 
Reason, quoted in van den Belt 2009, 258).
5.  Grossmann also outlines the economic imperatives behind these technological 
activities in the context of an emerging capitalist system of production. Cf. Merton 
(1938/1970, chapter VII). The economic imperatives behind advances in machine 
learning are not to be discounted, though there is not space to discuss them here.
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(hydrostatics and hydrodynamics, astronomy, chronometry, dynamics).” He 

also makes the connection between the rise of machine models for expla-

nation in the physical universe, as we see in the image of God the watch-

maker, and the thesis that human knowledge is properly of the humanly 

constructed (1962/2002, 23).

It is significant for Rossi that many of these technologies long predated 

their theorization. For example, lenses were an invention of the twelfth or 

thirteenth century, but only later did they receive attention as theoretical 

objects in the sixteenth century and beyond in works such as Della Porta’s 

1589 Magia naturalis and Kepler’s 1604 Paralipomena (Rossi 1962/2002, 55). 

The point is that technology and invention can easily exist independently 

of a body of knowledge that explains their workings conceptually. Canguil-

hem’s essay “Descartes et la technique” highlights Descartes’s interest in 

the acquisition of knowledge about how devices work. It is noted that the 

philosopher “despises art [i.e., technology] without explication, inventors 

without method” (Canguilhem 1937/1982, 114). The pursuit of truth is to 

be guided by the rules of the Cartesian method such that the practice of 

invention is systematic, not haphazard. Knowledge is to be sought not least 

for its practical effects, as we find in the famous “masters and possessors” 

passage from the sixth Discourse of 1637. Descartes writes of how the learn-

ing of some general notions in physics made him aware of their potential

to secure the general welfare of mankind. For they opened my eyes to the possibil-

ity of gaining knowledge which would be very useful in life, and of discovering 

a practical philosophy which might replace the speculative philosophy taught 

in the schools. Through this philosophy we could know the power and action 

of fire, water, air, the stars, the heavens and all the other bodies in our environ-

ment, as distinctly as we know the various crafts of our artisans; and we could 

use this knowledge—as the artisans use theirs—for all the purposes for which it is 

appropriate, and thus make ourselves, as it were, the lords and masters of nature. 

(1985, 142–143)6

Of the many possible things to say here, we will notice in particular how 

knowledge of crafts, once well articulated, is put forward as the model 

for knowledge of nature, and how mastery of the world beyond the work-

shop will stem from this successor to the “speculative philosophy.”

6.  See Rossi (1956, 142) for a discussion of Descartes that is in a similar vein as 
Canguilhem’s.
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This mid-twentieth-century historiographical tradition leaves its mark on 

Peter Dear’s more recent answer to the question of how to define science for 

the purposes of demarcating an area of study for the history of science. In 

his view, Western science7 is the product of a unification that occurred in the 

early modern period, bringing together natural philosophies and enterprises 

aiming at the disinterested understanding of nature, with materially directed 

practices of technology. The idea is that “this period saw the establishment of 

a new enterprise, one that took the old ‘natural philosophy’ and rearticulated 

it in the new terms of instrumentality: the engagement with the world that, 

in the nineteenth century, produced modern science was thus born of a dis-

cursive hybrid of these analytically unrelated endeavors” (Dear 2005, 397).8

The point about the two premodern enterprises being “analytically 

unrelated” stems from the frequently made observation that the natural 

philosophies of the Greco-Roman and medieval Christian worlds were con-

templative activities whose “effects,” so to speak, were to be found within 

the practitioners—the elevation of their minds.9 The stability of the old view, 

7.  Of course, this is a contestable term, but it suffices to mark the tradition to which 
contemporary neuroscience belongs.
8.  A similar conception may be familiar to philosophers of science from the work of 
Ian Hacking:

Reality as intervention does not even begin to mesh with reality as representation until mod-
ern science. Natural science since the seventeenth century has been the adventure of the 
interlocking of representing and intervening. (1983, 146)

In addition, consider the term technoscience, which foregrounds the dual nature of 
this activity (Kastenhofer and Schmidt 2011, 127). Technoscience is explicitly defined 
by Nordmann through the association of knowing with the making of phenomena:

In technoscientific research, the business of theoretical representation cannot be dissociated, even in 
principle, from the material conditions of knowledge production and thus from the interventions 
that are required to make and stabilize the phenomena. In other words, technoscience knows 
only one way of gaining new knowledge and that is by first making a new world (2006, 8, 
emphasis in original).

Nordmann, unlike Dear, is keen to assert a division between “classical modern 
science”—in which the “in principle” dissociation could occur—and contemporary 
technoscience. Note that Nordmann’s (2006, 23) subsequent characterization of tech-
noscience is applicable to the situation that will be described in section 8.3.1, where 
models and tools have lost their intelligibility so that the epistemic task of understand-
ing becomes moot.
9.  See Hadot (1995, chapter 3) on the study of physics as a “spiritual exercise.” For 
Dewey, Aristotle is the exemplar of the attitude whereby “pure intellectual inquiry”; 
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in which the desire to achieve understanding of the processes of the natural 

world was not associated with the aim of turning those processes to mate-

rial, mundane purposes such as medicine or agriculture, shows that there 

is no inherent link between these projects.10 According to Dear, the marriage 

of these distinct tasks was definitive of science. Nowadays the connection 

appears inextricable—to claim an innermost knowledge of the workings of 

nature but no kind of power over it is, to the descendants of Francis Bacon, 

to admit that your knowledge is counterfeit or empty. Yet the commonly 

held view, contested by Dear’s conception of science, is that science, prop-

erly speaking, has nothing necessarily to do with technology; it is knowl-

edge for knowledge’s sake, which just so happens to produce the results that 

make technological progress possible (Dear 2005, 401–402).11 This view is 

the “cascade” model, in which pure science is the source from which applied 

science flows (Carrier 2004).12 The incompatibility with Dear’s picture lies in 

its assumption that there is such a thing as science in pure form—purified 

that is, “knowledge as something not to be put to any use” is most highly prized 
(1929, 75). He relates this to a denigration of practical skills: “The mechanical arts 
dealt with things which were merely means; the liberal arts dealt with affairs that 
were ends, things having a final and intrinsic worth. The obviousness of the distinc-
tion was reënforced by social causes. Mechanics were concerned with mechanical 
arts; they were lower in the social scale” (Dewey 1929, 74).

See Schuhl (1938, 11–12) on this attitude in the writings of Aristotle and Plato.
10.  The stability of this view must be seen in the light of the rigidity of social orders 
in which a learned elite set itself as far apart as possible from the class of slaves, 
serfs, or menial laborers, those who made things and dirtied themselves. Zilsel (1942) 
argues that the story of science is bound up with the history of class relations, spe-
cifically, the rise of the bourgeoisie—a middle class between laborers and the learned 
elite. Coincident with the first development of science comes a value system that does 
not exalt disinterested contemplation and eschew worldy engagement, and hence is 
willing to put knowledge to work toward the mastery of nature (Schuhl 1938, 30–31). 
R. K. Merton finds this ethos strongly (but not exclusively) expressed in Puritan com-
munities. For instance, he writes of the “Protestant ethic” that “this scheme of ori-
entation embraced an undisguised emphasis upon utility as well as control of self 
and the external world, which in turn involved a preference for the visual, manual 
and concretely manageable rather than the purely logical and verbal” (Merton 1938/​
1970, 115).
11.  See, for example, the quotation from Rosenberg (2014) at the beginning of this 
chapter. Dear does argue, moreover, that by presenting itself as knowledge for knowl-
edge’s sake, science acquired the prestige of natural philosophy.
12.  The cascade model is also known as the “linear model” of Vannevar Bush.
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of its instrumental aims, with no bearing to material application, however 

remote or latent.

The point I wish to draw out is that the coupling of the task of under-

standing nature to that of controlling nature brings with it a reconfigura-

tion of epistemological terms to accommodate both of the participants in 

this conjoined endeavor. The way of knowing of science must be a way of 

knowing that facilitates or at least accommodates practices of manipulation 

and control. The premium placed in science on simplification and com-

municability of knowledge (as opposed, for example, to ways of knowing 

that do not attempt to prune away complications or deny the ineffable) is 

not unrelated to the circumstance that science, this mode of understanding 

nature, is also an instrumentally minded one. Simplification—as opposed 

to resignation at the complexity of things as they stand—facilitates real-

world effectiveness and communicability; and without communicability, 

the accrual of expertise across generations, critical for technological pro

gress, is impeded.13 We can also now appreciate the connection between 

Dear’s historical definition of science as a hybrid of natural philosophy 

and instrumentality and the initial prompt for this chapter, the thesis that 

artificial systems are the primary (or at least original) targets of theoretical 

understanding in science. On the one hand, artifice supplies an array of 

simpler model systems that help bootstrap the investigator into dealing 

with somewhat more complex ones: artificial systems aid simplification, 

which is itself crucial for instrumental capability. On the other hand, this 

process of hybridization comes with a destruction of the former epistemic 

and metaphysical division between the natural and artificial. Without the 

13.  See Rossi (1956, 140–141) on communicability and the communal process 
of science, especially in relation to Francis Bacon. The inherent instrumentality 
of scientific thought is thematized by at least two very different twentieth-century 
philosophers—John Dewey and Theodor Adorno (Snir 2020, chapter 2). While Dewey 
gives it a positive spin, the message from Adorno is that scientific understanding 
of things is tied to a logic of domination, crucial for capitalism but antithetical to 
thought, properly speaking. This connection is to be found in the Enlightenment ideal 
of science as the inquisitor of myth and metaphysics, where “anything which does 
not conform to the standard of calculability and utility must be viewed with suspi-
cion” (Horkheimer and Adorno 1947/2002, 3). Adorno does not elevate nonpragmatic 
theory over praxis, but he does call for a different integration of the two, as expressed 
in the essay “Marginalia to Theory and Praxis” (Adorno 2005); see also Horkheimer 
(1947/2013) on the confrontation with American pragmatism.
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removal of this barrier, the scientist’s reliance on artifice, in the process of 

acquiring knowledge, could not be justified.

The old division, of course, is strongly associated with Aristotle’s teleo-

logical natural philosophy.14 A commonplace of intellectual history of the 

seventeenth century is that mechanism replaced teleology in the cosmic pic-

ture. Dear concurs, with reference to Robert Hooke’s Micrographia of 1665, 

that the mechanical philosophy of nature was demanded by the newly 

conceived practice of natural philosophy aiming at control of nature: “The 

logical incommensurability between natural philosophy and utility is short-

circuited by having natural philosophy speak only in the terms of mechanical 

tools” (Dear 2005, 397). Similarly, an implication of the Hessen-Grossmann 

thesis that science founded itself on the analysis of technologies is that with 

the transference of the framework honed on machines to nontechnological 

objects, such as planetary motions, came a reconceptualization of the “natu

ral” (Freudenthal and McLaughlin 2009, 10). At minimum, the natural world 

would have to be conceived as something not fundamentally different in 

its operating principles from the artificial.15 Along with the production of 

hybrid natural-artifactual objects for experimental science, there is the intel-

lectual construction of systems not made by humans as still machine-like.

We can find in the Principles of 1644 (part IV, section 203), Descartes once 

again expresses the new ethos, where discoveries are made through what we 

would now call a reverse engineering of nature:

In this matter I was greatly helped by considering artefacts. For I do not recognize 

any difference between artefacts and natural bodies except that the operations of 

artefacts are for the most part performed by mechanisms which are large enough to 

be easily perceivable by the senses. . . . ​Moreover, mechanics is a division or special 

case of physics, and all the explanations belonging to the former also belong to the 

latter. . . . ​Men who are experienced in dealing with machinery can take a particu

lar machine whose function they know and, by looking at some of its parts, easily 

form a conjecture about the design of the other parts, which they cannot see. In the 

14.  However, see Newman (2004, chapter  1) for refinements of this picture of 
Aristotle.
15.  This shift is discussed by Rossi (1956, 142) and Canguilhem (1965/2008c) in rela-
tion to Descartes, and by Schuhl (1938, 33) in relation to Francis Bacon. Of course, the 
very notion of the “natural world” is fraught and contestable. Here, I mean only to refer 
to things not brought into being by people’s activity in the world around them. See 
Hadot (2006) for one study of the idea of nature in the history of natural philosophy 
and early science.
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same way I have attempted to consider the observable effects and parts of natural 

bodies and track down the imperceptible causes and particles which produce them. 

(Descartes 1985, 288–289)

Among so many things, the reader should note the succinct justifica-

tion given for the investigation of nature via artifact analogies: granted no 

fundamental difference between the natural and the artifactual, the process 

by which an engineer would learn of the workings of machinery is directly 

transferable to the workings of nature, and knowledge of macroscopic mech-

anisms is projectable down to the microscopic mechanisms said to be at play 

in nature.

I will shortly say more about neuroscience in the light of the definition of 

science presented here. One last point, for now, is to offset the concern that 

the primacy of theorization of artifice is a peculiarity of science at its sup-

posed inception in the sixteenth and seventeenth centuries. Two of the big 

theoretical achievements of the nineteenth century, which incidentally is the 

century in which science took the institutionalized form that we know today, 

had their first footings in the realm of technology. I am referring here to the 

theory of thermodynamics in physics and the theory of natural selection in 

biology. Carrier (2004) presents thermodynamics as an important example of 

“application innovation,” his term for the phenomenon of theoretical inno-

vation originating in the context of technological application, in contrast to 

the cascade model, in which theory is the precursor to applied science. The 

important detail here is that the invention of steam engines occurred with-

out a scientific theory, but once these machines had been created, thermo-

dynamics grew out of an examination of their workings with a view to their 

improvement, the founding document being Sadi Carnot’s 1824 treatise on 

the motive power of heat. With the full development of thermodynamics, 

it came to be a theory of energetic relations in all things, not only engines. 

As Rabinbach (1990, 46) relates, “Thermodynamics conceived of nature as a 

vast machine capable of producing mechanical work or, as von Helmholtz 

called it, ‘labor power.’ Initially a measurement of the force of machines, 

‘labor power’ became after the discovery of energy conservation the basis of 

all matter and motion in the physical world.”

Darwin’s own account of the origins of the theory of natural selection gives 

preeminence to his study of the practice of breeding by artificial selection, 

as well as the discovery that an analogy could hold between this and the 

process of speciation. While there is something of a scholarly controversy 
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over whether Darwin’s self-report should be credited, the technology of arti-

ficial selection certainly cannot be ignored in the background to the Origin 

of Species (Largent 2009). Writing of the significance of the analogy between 

natural and artificial selection, Secord (1981, 164) explains, “While his basic 

orientation—in both social and intellectual terms—always remained that of 

a naturalist, Darwin became one of the few to study the productions of man 

with the scientific care usually reserved for the productions of wild nature.”

With all this in view, it should now be clear that the reliance of neurosci-

ence on the computer model, as well as its failure to deal with brain “in its 

own terms,” without such systems of comparison, are not symptoms of the 

underdeveloped state of neuroscience, as Daugman (2001) and Eliasmith 

(2003) would have it. Rather, they are signs of neuroscience’s continuity 

with the rest of science.

8.2.1  Neuroscience So Considered

The intention and the result of a scientific inquiry is to obtain an understanding 

and a control of some part of the universe.

—Rosenblueth and Wiener (1945, 316)

I have just discussed a historiographical tradition that supports my proposal 

from chapter 5, that the making of an artificial object of investigation is a 

prerequisite for understanding in neuroscience. The key idea is Dear’s charac-

terization of science as a “discursive hybrid” of projects aiming to understand 

nature, on the one hand, and to instrumentalize it, on the other. Beyond 

the point that the intelligible is the made, that the neuroscientific aim of 

understanding the brain is served by the construction of experimental and 

representational objects, it is worth briefly considering some other aspects 

of neuroscience in light of these historical perspectives, as they yield insight 

into a number of common assumptions and research practices.

First, it is easy to find expressions of the view that the deliverables of neu-

roscience will be both understanding of the brain, and effective means of 

intervening in brain disorders. To give one example, a group of high-profile 

researchers state the rationale for the federally supported Brain Research 

through Advancing Innovative Neurotechnologies (BRAIN) initiative as fol-

lows: “The envisioned long-term pay-off of the BRAIN Initiative is a more 

comprehensive understanding of how the brain produces complex thoughts 
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and behaviours that will provide an essential guide to progress in diagnos-

ing, treating and potentially curing neurological and psychiatric diseases 

and disorders that devastate so many lives” (Jorgenson et al. 2015, 2).

Notice the adherence to the cascade conception, whereby basic research 

aimed at understanding will subsequently guide applied research aimed at 

intervention. We saw earlier that this conception underestimates the way 

that supposedly pure or basic research is intrinsically connected with instru-

mentality in its construction and conceptualization of its objects, even when 

not overtly set out on an application. Instead of the cascade conception, 

with its notion of pure science, we should picture a situation in which sci-

ence, founded on model systems—either abstract mathematical models, or 

concrete ones—presents two alternative faces. By virtue of their simplicity, 

models afford understanding; at the same time, because of their simplic-

ity, they serve instrumental purposes, aiding prediction and manipulation. 

To reiterate, the model is not a representation (in the case of a mathematical 

model) or exemplar (in the case of a concrete model system like the cerebral 

organoid)16 of an inherent simplicity in nature. The model is simple by vir-

tue of its being an artifact designed to render things more simple than they 

actually are.

The Grossmann-Hessen thesis makes sense of the observation that inven-

tion of new technologies preceded theorization as neuroscience developed in 

the mid-twentieth century. Computationalism could not have become the 

dominant theoretical framework for understanding neurophysiological phe-

nomena if it had not been for the prior invention of electronic computers, 

and the mathematical tools attending to them, as reported in many histo-

ries of cybernetics.17 More specific examples can also be found. Information 

theory was invented after World War II as a statistical framework for signal 

engineers. It was then picked up by researchers such as Attneave (1954) and 

Barlow (1961) as a framework for theorizing responses in the visual system. 

Movshon (2021, 188) writes of Barlow’s enthusiasm for information theory 

as surpassing anything that psychology or neuroscience had developed by 

itself, and that he considered the paper by Shannon (1951) to be “one of the 

16.  These are small clumps of neural tissue grown from stem cells in petri dishes. See, 
for instance, Nowogrodzki (2018).
17.  This point is discussed at length in chapter 4, and also, for instance, in Dupuy 
(2009), Kline (2015), Abraham (2016), and Husbands and Holland (2008).
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greatest ever in the whole of psychology and neurology, even though Shan-

non was a mathematically inclined electrical engineer with no training either 

in psychology or neuroscience.” The deployment of engineering concepts is 

a feature of Barlow’s output as a theoretician, and this tradition continues in 

more recent texts such as Principles of Neural Design by Sterling and Laughlin 

(2015). Predictive processing models, which have generated much interest 

within neuroscience and philosophy of cognition (Hohwy 2014, Clark 2016) 

first came to light in the context of television engineering.18 Nowadays, ANNs 

are the inventions that are shaping neuroscientists’ conception of “biologi-

cal neural networks,” and these will be considered in section 8.2.

We saw that already in Descartes’s Principles, there is the conception of 

natural scientific research as a kind of reverse engineering. This strategy is 

common in theoretical neuroscience, nicely explained by Dennett (1995) in 

relation to Marr’s theory of vision, and which I have discussed elsewhere in 

the case of theorizing the robust properties of nervous systems (Chirimuuta 

2017a). The strategy, as Descartes made explicit, requires the denial of a 

fundamental or essential difference between natural and artificial objects. 

By noticing that this methodology demands commitment to a philosophi-

cal view about the ontological equivalence of organs and artifacts, we can 

make sense of the dominance within the scientific community, as noted in 

chapter 4, of the literal interpretation of computational models of the brain. 

The default opinion among researchers is that a neural system is identical, at 

some level of abstraction, with a computational model representing it, even 

though the dictum of statistician George Box—that “all models are false, but 

some are useful”—is so often heard on neuroscientists’ lips (e.g., Lindsay 

2021, 15). However, the historical perspectives lend support to my analogi-

cal interpretation of computational models—as against a literal one, even 

though the literal one has the authority of the scientists behind it—for they 

reveal why practitioners themselves would tend toward literalism, and this 

tendency is based not on principle or discovery, but rather it is conditioned 

by the methodological framework.

18.  The source of the model is mentioned by some early adopters in neuroscience, 
Srinivasan, Laughlin, and Dubs (1982, 428), and by Sterling and Laughlin (2015, 249): 
“Predictive coding, an image compression algorithm invented by engineers almost 
60 years ago to code TV signals efficiently, is implemented in animals by a basic sen-
sory interaction.”
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The historical view also helps to meet a potential objection that the ana-

logical interpretation collapses into either a literal or metaphorical construal 

of these models. Lande (2019) observes that the choice is normally a dichot-

omy: the claim that the brain is a computer is either a literally descriptive one 

or a mere metaphor, without descriptive ambitions. My analogical interpreta-

tion presented itself as a distinct alternative to these. An obvious objection is 

that either I mean by “analogy” a similarity, a sharing of a subset of proper-

ties, which would collapse the view in literalism, or I mean it as a figure of 

speech, a simile, which would collapse the view into the idea that brains are 

computers, just metaphorically. As already mentioned in chapter 4, we may 

rule out analogy as direct similarity or sharing of properties by pointing out 

that what the computational model represents is an ideal pattern, a set of 

features suggested by neural activity but underdetermined by it. The work in 

chapter 5, on the creation of ideal patterns and the constructive work that 

goes on in experimental neuroscience, reinforces this point.

Finally, the historical perspective lends itself to a more general way of 

considering the distinctive place of analogies in science. As Hesse (1955, 

353) says, analogies allow the unfamiliar to be described in terms of the 

familiar. One can think of this along the lines of domestication. Domes-

tication is the process of making a wild thing familiar or “homely,” but it 

is at the same time a process of making a new kind of creature, one both 

natural and artificial, amenable to somebody’s purposes. The point is that 

scientific analogies work not by simply fixating on similarities between the 

familiar and unfamiliar, but by the construction of objects that are interme-

diary between what is artificial and comprehensible and what seems wild 

and inscrutable. This is all consistent with the verum factum, the idea that 

intelligibility comes about with the process of making, and with the view 

that historically, theorization begins with machines and devices and then 

circles out to encompass other objects. In neuroscience, the expansion of 

theory is to systems that are organic, but these should not be thought of 

as purely natural: they are at the same time still artificial. Classic compu-

tational models have some claim to be literally representative, albeit in an 

approximate manner, of ideal patterns gleaned from the simplified behav

ior of neural systems under artificial conditions. Thus, computation is not 

a mere metaphor, but it is also not literally representative of neural activity 

beyond the enclosure of the laboratory. Its further relevance, its representa

tional adequacy vis à vis the wild type, is indeterminate.
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I emphasize that even with respect to artificially constrained neural sys-

tems, computational models can be taken as literally representative only 

at a high level of abstraction. There are countless material dissimilarities. 

A view expressed by computational neuroscientists is that these dissimi-

larities are inessential to processes by which the brain enables cognition 

(Lindsay 2021, 15).19 But given the number of unanswered questions about 

what details matter in neural systems (Shenoy 2015, 83), this is too hasty 

a view to maintain. At the same time, this is the view that has the weight 

of the Cartesian tradition behind it, invested in the denial of essential dif-

ferences between organic and mechanical objects. The philosophical sig-

nificance of disanalogies between brains and computer models will be 

the subject of chapter 9. I will conclude here by reiterating the lesson of 

chapter  5, that reliance on artifice—the construction of hybrid systems, 

and the deployment of artifacts like computers as prisms through which to 

glance at nervous tissue—constitutes a limit to scientific understanding of 

the brain. Neuroscience cannot deliver knowledge of the brain unadulter-

ated by instrument analogies, and indeed, by the instrumental aims bound 

into the scientific enterprise.20 Therefore, the brain-in-itself is not a possible 

object of scientific comprehension. One might wonder, though, that the 

construction of more brainlike machines could deliver some means to sur-

pass this limit (Bongard and Levin 2021). This possibility will be considered 

in section 8.4 following an examination of these new technologies.

19.  However, we saw in chapter 5 that experimental neuroscientists are more likely 
to emphasize such differences.
20.  I do not mean to suggest that this limitation is a peculiarity of neuroscience. 
That the sciences cannot envisage their objects other than as a “manipulandum” is a 
point argued by Merleau-Ponty (1961/2001, 288):

Science manipulates things and gives up living in them. It makes its own limited models 
of things; operating upon these indices or variables to effect whatever transformations are 
permitted by their definition, it comes face to face with the real world only at rare intervals. 
Science is and always has been that admirably active, ingenious, and bold way of thinking 
whose fundamental bias is to treat everything as though it were an object-in-general—as 
though it meant nothing to us and yet was predestined for our own use.

A thing that is distinctive about this limitation when it comes to the mind-brain 
sciences is that failure to appreciate the gap between model and target has trou-
bling ramifications for human self-understanding. This is a point that Merleau-Ponty 
insists on, as discussed further in Chirimuuta (2020d).
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8.3  Renegotiating the Relationship of Understanding and Control

Since the dominant ideology of modern science is inherently unstable, what 

counts as science constantly requires reestablishing and remaking.

—Peter Dear (2005, 405)

One important caveat is that I do not mean to give the impression that 

human-designed systems are all perfectly intelligible. There are limitations 

even of the maker’s knowledge, a point well put by Horace Barlow.21 Still, my 

view is that the neuroscientist’s understanding is based on there being artifi-

cial systems that are at least to some extent intelligible, and these model-based 

practices are consistent with a scientific tradition in which for centuries the 

projects of understanding and control of nature have been intertwined. But 

there is no guarantee that model systems will always be intelligible enough to 

support this union. What happens when the models themselves become so 

complex that the scientist does not really see how they work? This was a situ-

ation envisaged by John von Neumann, one of the originators of cybernetics:

At the Hixon Symposium, finding himself taxed by the neurophysiologists (includ-

ing McCulloch) for not stressing enough the difference between natural and artifi-

cial automata, he replied that this distinction would grow weaker over time. Soon, 

he prophesied, the builders of automata would find themselves as helpless before 

their creations as we ourselves feel in the presence of complex natural phenomena. 

(Dupuy 2009, 142)

And this is, arguably, the situation in which computational neurosci-

ence finds itself today. The state-of-the-art models of many neural systems 

are deep (i.e., many-layered) ANNs with millions of parameters. The debate 

over the question of the intelligibility of these models is fraught and ongo-

ing. What is uncontroversial is that they are far less easy to understand 

than the simpler, older classes of models, and their success in neurosci-

ence as predictive devices comes with challenges to established theories. As 

Saxe, Nelli, and Summerfield (2020, 57) write, “At worst, the deep learning 

framework seems to face neuroscience with an existential challenge. . . . ​it 

seems to propose sweeping away existing knowledge about how specific 

21.  “The person who understands most about a machine is its designer, and no 
designer of a complex machine would claim that everything about it was perfectly 
understood” (Barlow 1990, 16).
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classes of computation underpin behaviour, merging the goals of theoreti-

cal neuroscience with those of contemporary AI research.”

Some commentators, such as Wired magazine’s Chris Anderson, have 

taken the rise of machine learning methods in science to presage an “end 

of theory”–the obsolescence of the scientific method as known until today, 

where clearly articulated hypotheses and models were tested against human-

scale data sets.22 The task of this section is to examine what happens to neu-

roscience as it departs from its traditional modus operandi of building models 

that are simple enough to be, for the most part, understood by their creators. 

Since it is always too early to predict future history, I will describe three pos

sible scenarios: first, that we are witnessing a radical break from neuroscience 

as we know it; second, that there is no significant breach from past practice, 

just a change in the set of theoretical questions deemed tractable; and third, 

the proposal that machine learning–based science is an intensification of cer-

tain tendencies established in the prior history of science.

8.3.1  Divorce of Prediction and Understanding

An implication of Dear’s conception of science, applied to current model-

based research, is that the scope of science is limited to those areas for 

which the models are simple enough to be understood. On this conception, 

understanding is one of the two essential faces of science, and without it, 

a practice would revert to being instrumentality (technology) alone. The 

point here is that science is demarcated as a mode of activity in which work 

productive of understanding cooperates and comingles with practices gen-

erating instrumental control. A major component of instrumental success 

is the development of accurate means of prediction. So we can take predic-

tion as a key instrumentalist goal, standing alongside the goal of under-

standing. If the two goals cannot be harmoniously satisfied—if practices 

resulting in understanding inhibit the achievement of instrumental con-

trol, and vice versa—then these two forms of activity, technology and natu

ral philosophy, whose union is definitive of science, will have to go their 

separate ways. Arguably, this is the situation facing neuroscience today, for 

a thing made apparent by the entry of machine learning into neuroscience 

is that there is a trade-off between understanding and the instrumentalist 

22.  See Anderson (2008), and for a critical discussion, see Boon (2020).
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aim of prediction. With complex enough systems, like the brain, the most 

predictively accurate models are too complex to yield much understanding, 

and the most theoretically illuminating models are too simple to be good 

at prediction.23

An instance of this trade-off—“between a model’s simplicity and its abil-

ity to accurately predict neural responses” (Butts 2019, 458)—has already 

appeared in chapter 5. There, it was noted that the classic linear-nonlinear 

models of primary visual cortex (V1) cells were fairly accurate in their pre-

diction of responses to artificial visual stimuli, but they failed when stimu-

lus conditions became more naturalistic. However, the models were highly 

transparent and afforded a computational explanation of the operation of 

these cells, as proposed by Barlow and others. The deep convolutional neu-

ral networks (DCNNs), now employed for modeling in visual neuroscience, 

yield accurate predictions, even for responses to natural images and mov-

ies, but such models are far less interpretable and may never lead to a more 

advanced understanding of the cells’ response profiles.24

Discussion of the trade-off between prediction and understanding has 

not been confined to neuroscience. It appears in the literature on statistics 

and psychology, disciplines that are now like neuroscience witnessing the 

power of machine learning to make inductions on the basis of gigantic data 

sets, without enforcing the assumptions of linearity that made the mathe

matics of old-fashioned models tractable and interpretable.25 It is interest

23.  The case for the trade-off is put forward at length in Chirimuuta (2020c); and in 
Chirimuuta (2023a), I discuss why models that fail predictive accuracy still count as 
delivering understanding of the nonfactive sort. Here, I focus on scientists’ discus-
sion on the trade-off.
24.  With such models, Butts (2019, 463) reports, “what a given neuron is selective 
to and how such selectivity is generated are essentially inscrutable.” The argument of 
Emily Sullivan (2019), that the opacity of ANNs presents no obstacle to their provid-
ing scientific understanding, seems to ignore the issues being raised by the scientists 
themselves and to neglect the differences between machine learning and traditional 
modeling techniques.
25.  See for instance, Breiman (2001), Shmueli (2010), and Yarkoni and Westfall (2017). 
Of particular interest for our study is Breiman’s observation that the success of ANNs 
for prediction unsettles the traditional value placed in simplicity: “Occam’s Razor, long 
admired, is usually interpreted to mean that simpler is better. Unfortunately, in pre-
diction, accuracy and simplicity (interpretability) are in conflict. For instance, linear 
regression gives a fairly interpretable picture of the y, x relation. But its accuracy is usu-
ally less than that of the less interpretable neural nets.” (2001, 206)
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ing to see some of these scientists commenting on the historical fact of 

the interconnection between the tasks of making behavior intelligible by 

explaining it and making it controllable through prediction:

The goal of scientific psychology is to understand human behavior. Historically 

this has meant being able both to explain behavior—that is, to accurately describe 

its causal underpinnings—and to predict behavior—that is, to accurately forecast 

behaviors that have not yet been observed. In practice, however, these two goals 

are rarely distinguished. The understanding seems to be that the two are so deeply 

intertwined that there would be little point in distinguishing them. (Yarkoni and 

Westfall 2017, 1100)

Among neuroscientists, we find Hasson, Nastase, and Goldstein (2020) 

noting the trade-off26 and a radical lesson for reform of experimental meth-

odology. They observe the same trend as discussed in chapter 5, from highly 

controlled, nonnaturalistic experiments in which a relatively small amount 

of data was collected over just one of the neuron’s possible response pro-

files, to more naturalistic paradigms allowing the neural population to drift 

through a large range of its response states, and with recording techniques 

capable of producing many orders of magnitude more data. They describe 

how the older methodology went in tandem with a conception of the task of 

science as that of devising a simple predictive model describing the process 

by which the data were generated. Given the controlled conditions and pau-

city of data, scientists were aware that they were undersampling from a vast 

distribution, but the hope was that with the right theoretical insight, they 

See also Napoletani, Panza, and Struppa (2011) for a discussion of the trade-off in 
various other disciplines, including molecular biology and meteorology. I do not expect 
that many of the issues discussed in section 8.3 are peculiar to neuroscience. I should 
also emphasize that predictive success within neuroscience of ANNs does not imply that 
these models are themselves brainlike. This is evidenced by the fact that ANNs achieve 
predictive success in these other disciplines in which claims of similarity to their targets 
would not make sense. ANNs are predictively powerful because of their huge number of 
parameters and access to massive amounts of data, combined with clever engineering 
techniques to avoid overfitting to nonprojectible patterns in the data (i.e., noise).
26.  “As with any scientific model, neuroscientific models are often judged based on 
their interpretability (i.e., providing an explicit, formulaic description of the under
lying causes) and generalization (i.e., the capacity for prediction over broad, novel 
contexts). However, in practice, interpretability and generalization are often at odds: 
interpretable models may have considerable explanatory appeal but poor predictive 
power, whereas high-performing predictive models may be difficult to interpret.” 
(Hasson et al. 2020, 417, references omitted).
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would hit upon the model that extrapolated accurately beyond the sample, 

predicting and explaining behavior in a range of nonexperimental condi-

tions.27 However, Hasson et al. (2020) argue that the failure of the older mod-

els to predict data from a broad range of conditions is an indication that 

this expectation was flawed. They advocate for a new methodology for the 

big data era, in which data are densely sampled over a wide range of condi-

tions, and the ambition to devise simple, theoretically motivated models that 

extrapolate beyond the sampled regime is no more. Instead, machine learn-

ing is used to generate direct fit models that, with an excess of parameters, 

can mold themselves to the contours of any large data set without explo-

sive overfitting of noise, thus yielding accurate predictions within a broader 

sampled regime. There is no attempt to build a general, explanatory theory 

as this new process “does not rely on explicit modeling of the overarching 

generative principles” (418).

With this trend of predictive power losing its moorings from under-

standing comes reason to wonder if the flagship successes of science seen 

in the last few centuries have been due to something of a coincidence: that 

there exists a delimited range of systems for which the predictively power

ful theories and models are also intelligible to human scientists. Given 

these successes, it was assumed that the natural world just was that way: 

simultaneously intelligible to scientific reason and amenable to technologi-

cal control. But it could be that there is nothing in the fabric of the world 

ensuring that understanding and predictive success should accompany one 

another. Instead, this is only to be expected for the few things in nature 

that are quite simple, or rather, simplifiable without a disturbing loss of 

predictive accuracy. Those quarries of things that are both understandable 

and predictable have been mined intensively for some time. The divergence 

of models for prediction and understanding is perhaps the first indication 

that a resource, always taken to be unlimited, is depletable after all. And 

if this raw material for science—things subjectable simultaneously to sci-

entific understanding and manipulation—is limited and nonrenewable, it 

means that science itself has a boundary. It will not be capable of taking in 

all the natural world in one almighty gaze—as the cosmic iconography of 

science has always depicted it.

27.  See Hasson et al. (2020, figure 1).
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To set the limits of science at the outer edges of the intelligibility of nature, 

as du Bois-Reymond (1872/1874) did, is not to set any bounds on technology 

by itself. Neurotechnology, powered by gigantic deep networks running on 

supercomputers and guzzling data, seems to be quite capable of maintaining 

a steady, if not sprinting, pace of progress by itself, at least for some narrowly 

defined applications. Still, it is prudent to wonder about the negative impli-

cations of a decoupling of understanding and instrumentality. This is in fact 

something that the biologist Carl Woese raises as a deep concern: “A society 

that permits biology to become an engineering discipline, that allows that 

science to slip into the role of changing the living world without trying to 

understand it, is a danger to itself” (quoted by Callebaut 2012, 71).

However, it is tempting to brush away these worries, and the “end of sci-

ence” forecasts, with a few objections to the argument presented here. For one 

thing, it is an exaggeration to say that advanced machine learning models 

like large ANNs are completely uninterpretable or will never lead to theoreti-

cal insights. The ways that ANNs, fully lodged into neuroscientific practice, 

are expected to afford understanding will be discussed shortly. Another thing 

is to point out that the discovery and use of means of intervening, without 

understanding, are not new in the neurosciences. All the major psychiat-

ric drug classes were discovered serendipitously (Nutt and Need 2014; Berk 

and Nierenberg 2015). The important point here is that such inventions are 

often the inspiration for theory-driven research, such as the line of investiga-

tion into the dopamine hypothesis for schizophrenia. Indeed, this cycle of 

technological growth followed by theoretical development through reverse 

engineering is highly characteristic of traditional science, as discussed in sec-

tion 8.2. Thus, next to the argument that machine learning methods presage 

the end of neuroscience, we find that there are equal grounds for an argu-

ment that neuroscience, facing no ineluctable barrier or epochal change to 

the terms of its existence, is to be expected to carry on more or less as before.

8.3.2  Understanding Redirected

There are high expectations for ANNs to generate progress in many domains 

of cognitive neuroscience, not only vison but also spatial navigation 

(Bermudez-Contreras, Clark, and Wilber 2020), and language (Lappin 2021), 

among other topics. Yet the state-of-the-art models do not yield understand-

ing of the target system in the same way that previous generations of models 

did. This is largely due to the complexity of the ANNs—their very many 
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layers and connection weights—and the fact that the mathematical func-

tions they use to fit experimental data are not hand-coded or selected by 

the modeler, but are arrived at by adjusting virtual connection weights over 

many iterations of training, remaining implicit in the connection weights 

of the trained network. The concern raised just now was that the predictive 

success of these models would force neuroscientists to abandon their tradi-

tional goal of understanding the brain, or at least that the practices condu-

cive to understanding would have to be disentangled from those employing 

machine learning, leaving us with two sets of activities not recognizable by 

themselves as science.

However, in this section, I will discuss examples of research in neurosci-

ence that fully incorporate the use of ANNs but do not give up on the goal of 

understanding. Instead, we will see that understanding is redirected toward 

challenges taken to be more feasible than the traditional one of charting the 

computations underlying cognitive performances and giving them a theo-

retical rationale, such as efficient coding. In these cases, scientists do not 

renounce the aim of finding simple—and hence comprehensible—princi

ples in operation in the brain, as the end-of-theory prognosis would have 

it. There is a recurrence of some of the traditional theory-driven norms and 

practices, showing us that the old scientific pursuit of simplicity is ongoing 

in the era of deep learning–based modeling.

In this approach, an artificial proxy—an ANN—is still being used to gain 

understanding of the brain. But rather than seeking explicit representations 

of computations supposed to be shared between the artificial and biologi-

cal neural network (BNN), for this version of the analogical strategy, the 

epistemic targets are principles, design specifications, or constraints, which are 

said to determine the operation of both classes of systems. Such princi

ples would be simple enough to be understood, even if the details of pro

cessing within the ANN and BNN are not. For example, Hasson et al. (2020), 

whose negative argument was discussed in section 8.3.1, make the positive 

case that researchers should instead direct their efforts to the discovery of 

“design specifications” common to both artificial and organic neural net-

works, thus focusing their theoretical efforts on the understanding of net-

work architectures, learning rules, and objective functions (423). In my two 

detailed examples, as we will see, the authors are clear on their rejection of 

the old ways that neuroscientists have sought simplicity, and through that, 

understanding of the brain. And, unlike some (e.g., Rudin and Radin 2019), 
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these authors are not denying that the lack of transparency due to the com-

plexity of ANNs, compared with other classes of models, is significant.

First, the proposal of Lillicrap and Kording (2019) is a response to the 

entrenched idea that simplicity in the brain will be found through descrip-

tions at Marr’s level of computational explanation, with its abstraction both 

from the messy details of neurobiological implementation and the knotty 

strata of algorithm and representational formats. Computation-level descrip-

tions would describe in elegant mathematical formulas the function trans-

forming sensory inputs into commands generating intelligent, perceptually 

guided behavior. The validation of these theories would occur through the 

building of artificial systems, also implementing these computations, show-

ing lifelike perceptual capabilities. This approach was exemplified in the 

classic experimental and theoretical work on the visual system, discussed in 

chapter 5, and was more recently cast as the search for canonical neural com-

putations (Carandini and Heeger 2011; Chirimuuta 2014).

Machine learning has been the undoing of this approach not because 

ANNs like AlexNet and ResNet have “solved vision” (Serre 2019), but because 

they have dramatically outclassed the predictive accuracy of the simple, the-

oretically motivated models, leaving the idea that what the visual system 

is doing, in principle, could be represented by a handful of models of a few 

parameters each, looking naive if not foolish. Lillicrap and Kording pose the 

question “What does it mean to understand a neural network?” and their 

answer is intended to apply equivalently to organic and artificial networks. 

They write that “compactness is necessary for what we would call a mean-

ingful understanding” (3). In effect, they are making simplicity of represen

tation of a network—having a “compact description” (2) of it—a necessary 

condition for its intelligibility. Since the function learned by an ANN trained 

to classify photographed objects to humanlike performance levels will be 

embedded in the millions of parameters of the model, Lillicrap and Kording 

argue that unless this full description of the model could be compressed into 

a much more parsimonious description, understanding of how the network 

classifies an image cannot be obtained.28 There is no reason to think that 

28.  Lillicrap and Kording (2019) do not specify how compact the description would 
have to be to make the network intelligible, although they do state that the number 
of parameters must be reduced by quite a few orders of magnitude since a network 
compressed to around 100,000 free parameters would still not be intelligible by their 
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an ANN with few enough parameters to be interpretable would give high 

performance with real-world data sets.

Although a compact description of the computations occurring in ANNs 

cannot be obtained, Lillicrap and Kording emphasize that the learning rules 

of the network are fully understood, the architectures are known, and in 

fact, the program for building a high-performing network like ResNet takes 

fewer than 100 lines of code. From this, they draw a lesson for neuroscience: 

for both ANNs and BNNs, simplicity is to be found in the learning rules 

and architectural principles. Those are feasible targets of understanding, as 

opposed to the hopelessly complicated and distributed patterns of informa-

tion processing. Systems neuroscience, they argue, should give up on the 

long-standing ambition of building interpretable models that explain cog-

nitive performances, and focus instead on theories targeting anatomy and 

plasticity rules.

Their argument for abandoning the former agenda of seeking 

computational-level explanations is worth discussing in detail. They point out 

that belief in the feasibility of this program is supported by an analogy from 

the success of statistical physics in finding compact, midlevel descriptions of 

systems containing countless particles.29 Here, physicists employ simplifying 

methods such as the renormalization group (see Batterman 2018) to arrive at 

descriptions that are both interpretable and useful for prediction and control. 

Although bolstered by some successes of similarly coarse-grained neural mod-

els for narrowly defined processes, like calculation of eye movement direction, 

Lillicrap and Kording argue that the analogy between statistical physics and 

neuroscience soon breaks down:

In the gas case, all atoms are the same, are exchangeable, and have short memory 

while in brains each cell may be unique and have a memory that effectively goes 

back to the birth of the animal. Moreover, the argument we made here suggests 

that such a compact mid-level model of computation can not have the property 

lights (3). They also argue that standard methods for reverse engineering ANNs, such 
as visualization of the response profiles of some of the nodes, are insufficient for 
grasping how they classify an image (3). It is worth comparing their definition of 
intelligibility of models to that of Gao and Ganguli (2015), who, like de Regt (2009), 
follow Richard Feynman and Werner Heisenberg in stating that a model is intelli-
gible if one can make qualitative predictions of its outputs without actually running 
through the calculations.
29.  For instance, see Carandini (2012, 507).
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of actually working in the domains of brain performance where the environment 

can not be compactly communicated. Thus the analogy to physics may be mis-

leading in the context of neuroscience. (2019, 5)

What is interesting here is the point that the physics analogy breaks 

down because in physics, the low-level, molecular details really do not 

matter for predicting the collective behavior, so it is safe to abstract away 

from them. This assumption does not hold in neuroscience since it is likely 

that the brain’s functionality is due to its heterogeneity (which is to say, its 

complexity) at the neuronal and subneuronal levels. We may note in pass-

ing that ANNs themselves abstract away from that complexity, modeling a 

homogenous population of nodes lacking the physiological and biochemi-

cal characteristics of actual neuronal cells.

Cao and Yamins (2021b) share the notion of intelligibility set out by Lil-

licrap and Kording,30 and like them concede that the absence of compact 

descriptions of the processing within neural networks sets up a barrier to 

intelligibility: “In the actual case of neural networks (whether biological or 

artificial), it may turn out that no efficient encapsulations of the relevant 

dependencies are available—either of how the system’s behavior depends 

on inputs, or how its behavior changes in response to perturbations of the 

mechanism. We think that it is primarily this apparent characteristic of NN 

models that provokes critics to say that they are unintelligible” (3–4).

However, the point of their paper is to argue that there is a second form 

of intelligibility achievable for these systems, akin to optimality explana-

tions in evolutionary biology. This comes about through discovery of the 

constraints that govern learning and optimization for these networks. They 

emphasize that both artificial and biological neural networks are kinds of 

functional systems—“a system that is the way it is for a purpose or a rea-

son” (4)—and critically, that it is shaped by the demands on it to perform 

a particular task such as object classification. Since there are dependencies 

between form and function, with certain architectural features and repre

sentations being demanded for the most exacting tasks, Cao and Yamins 

argue that functional considerations will yield explanations of the form of 

these networks (11). Moreover, they make the case that a task such as object 

30.  “One well-recognized way in which a system can be made intelligible is through 
the discovery of a concise mathematical description of its performance” (Cao and 
Yamins 2021b, 15).
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classification is so difficult that solutions will be highly constrained—there 

will not be more than one way to crack the egg—meaning that knowledge 

of the form taken by an ANN that solves the problem will give insights 

transferrable to the case of the primate visual system (16).31

It is interesting, finally, to note that like Hasson et al. (2020), Cao and 

Yamins are critical of the old experimental methods of making neural sys-

tems intelligible by using highly controlled, “reduced” behavioral tasks:

It does not make sense from the optimization perspective to choose the most 

reduced version of a given task domain and then seek to thoroughly understand 

the mechanisms that solve the reduced task before attempting to address more 

realistic versions of the task. In fact, this sort of highly reductive simplifying 

approach is likely to lead to confusing results, precisely because the reduced task 

may admit many spurious solutions. (2021b, 19)

Their point is that by using simplified tasks, one makes a task easy to 

perform, so that the range of network forms that can solve the task is not 

highly constrained. Without sufficient constraint, transference of knowl-

edge of an ANN solution to a BNN is not valid, so the research program 

premised on the assumption that both classes of networks converge on the 

same solution (the only peak in the fitness landscape—see Cao and Yamins 

2021b, figure  3), and hence take the same form, cannot be carried out. 

Thus, they endorse the recent trend, discussed in chapter 5, of making tasks 

in experimental neuroscience lifelike and challenging.32

31.  But see Sinz et al. (2019, 971) for the contrary opinion:

There is probably a very large group of networks, our visual system included, that can solve 
single tasks such as ImageNet, but they might use vastly different solution strategies and 
exhibit quite different robustness and generalization properties. This implies that our current 
datasets, even though they contain millions of examples, simply do not provide enough con-
straints to direct us toward a solution that is similar enough to our visual system to exhibit its 
desirable robustness and generalization properties.

32.  One should object here that it is too quick to assume that simplified tasks are 
easier, and therefore less constrained. Simplified tasks of classical neurophysiology 
are often not easy in the sense that they do not come naturally to the animal doing 
them. The fact that they are nonethological means that they are hard for the animal 
to learn to perform. It can be surmised that the notion of easy/difficult being invoked 
by Cao and Yamins is one tracking the size and complexity of the data set that the 
network is being trained on. The worry here is that this does not necessarily map 
onto the division between reduced and ethological experimental paradigms.
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We may conclude from these examples that inclusion of machine learn-

ing methods within neuroscientific research does not force scientists to 

abandon the aim of understanding. Even when conceding that old targets 

may be permanently out of reach, the understanding of neural networks in 

computers and in brains is pursued in different modes. This serves as a coun-

terargument to the prognosis in section 8.3.1 that neuroscience is coming 

to an end because machine learning is driving off from researchers’ agenda 

the goal of understanding the brain. At the same time, the material in this 

section does not undermine the previous argument that there is a limit to 

neuroscience, in that there is a limit to what may be understood about the 

brain. Those proposals discussed here have all conceded that because of 

the complexity of the brain, there is a barrier to understanding the neural 

processes underlying intelligent behavior. This limit has been made appar-

ent because even ANNs, though nowhere near the complexity of actual 

brains, in order to become sophisticated enough to reach performance lev-

els comparable with organic systems, have had to grow in size and intricacy 

beyond the range of what is humanly interpretable.

8.3.3  Understanding Redefined

The third of my forecasts about the reshaping of neuroscience through the 

incorporation of machine learning focuses on the way that the technology 

will change what is meant by understanding the brain. One way to describe 

the reorganization of terms that occurred at the origin of science, according 

to Dear’s account, is to say that the natural, philosophical, and contemplative 

notion of understanding was adjusted to incorporate a new technically driven 

spirit. Whereas previously the notions of knowing and understanding nature 

were not linked with instrumental control, definitions changed such that the 

ability to predict and manipulate things was taken as a sign of one’s having 

understood them. The impact of this shift was profound. The most common 

argument today for scientific realism, the “no miracles argument,” rests on 

the claim that without science having grasped some deep truth of nature, the 

fact of predictive and technological success would be miraculous (Psillos 1999, 

chapter 4; Dear 2005, 404). Here, I will discuss a case of ANNs being employed 

in neuroscience as a form of automated science and show how it suggests a 

yet more radical redefinition of understanding along instrumentalist lines—

one consistent with the ideals of a purely empiricist epistemology of science.
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Bashivan, Kar, and DiCarlo (2019) report an experiment in which an 

ANN is built to perform the task of receptive field mapping for neurons 

in area V4 of the primate ventral stream. Of the studies discussed in this 

chapter so far, this is the best example of machine learning as automated 

science because the ANN is doing work normally carried out by a human 

experimenter and theorist. The purpose of the study was to build encod-

ing models of V4 neurons’ response profiles that would predict their acti-

vation to any arbitrary stimulus, and then to use these models to generate 

novel stimuli that maximally activate the neurons, constituting an effec-

tive “control handle” for neural activations.33 Whereas in science without 

automation, the experimenter would select stimulus classes and the theo-

rist would write down or program the encoding model, this study shows 

how these tasks can be offloaded to an ANN trained on a large set of 

labeled natural images. The impressive thing about the study is that the 

novel images synthesized by the network allow a much greater degree of 

control of neural activity in V4 than by any former methods of stimu-

lus selection. The downside is that this control is not accompanied by a 

gain in understanding of V4 neurons’ response profiles, in any traditional 

sense.

One of the purposes of the study was actually to address criticisms that 

their previous ANN models of the ventral stream did not generate under-

standing (Bashivan et al. 2019, 1). In response, their intention was that “at 

least one ANN model can be used to noninvasively control the brain—a 

practical test of useful, causal ‘understanding’ ” (11). This is a very interest

ing remark because it in effect lays down an operationalist redefinition of 

scientific understanding. From a cognitive meaning—a sense of compre-

hension or ability to grasp the principles of a thing—we have an entirely 

noncognitive sufficient condition: a neural system is understood if it can be 

controlled. This is not merely a verbal ruse since it is quite consistent with a 

long-standing empiricist conception of science. Carl Hempel (1965, 337), 

for example, defined understanding a phenomenon as the ability to predict 

it: “The [deductive-nomological] argument shows that, given the particular 

33.  A comparable study by Walker et al. (2019), mentioned in chapter 5, uses ANNs 
to find the maximally excitatory stimuli for mouse V1 neurons. In that study, the 
ANN is initially trained on prediction of neuronal responses rather than on classifica-
tion of images.
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circumstances and the laws in question, the occurrence of the phenom-

enon was to be expected; and it is in this sense that the explanation enables 

us to understand why the phenomenon occurred” (italics in original, quoted 

in de Regt 2009, 23–24).

Notions of scientific explanation and understanding that referred to 

people’s feelings and cognitive states instead of hard metrics like predictive 

success were treated with suspicion by twentieth-century empiricists because 

they threatened to taint science with subjectivity (de Regt 2017, chapter 2). 

The instrumentalist emphasis of Bashivan et al.’s proposal is also reminiscent 

of this tradition of philosophy of science. Instrumentalism is, of course, nor-

mally opposed to scientific realism since it asserts that the aim of science is 

not the discovery of theories that represent nature as truthfully as possible, 

but rather the discovery of theories that allow prediction and control. Mieke 

Boon (2020, 52), likewise, has made the observation that the data-driven 

principles of automated science are empiricist ones and, conversely, that if 

one adheres to an empiricist epistemology of science, one has no grounds to 

hold that data-hungry machines will not eventually be better scientists than 

human beings.34

Given the historical theme of this chapter, the point I would like to empha-

size is that the rise of machine learning in neuroscience is consistent with a 

notion of the development and ideal trajectory of science that can be derived 

from the work of Ernst Mach, one of the founders of empiricist philosophy 

of science.35 For Mach, the point of scientific concepts was prediction, and 

thereby the ability to achieve material results, with maximal economy of 

thought (Mach 1882/1895).36 Thus, the goal of science is specified by Mach 

to be an instrumental one. Importantly, Mach recognized that science had its 

origins in natural philosophy, but he held that the progress of science con-

sisted of its gradually purging itself of its metaphysical legacy, in particular 

34.  See Hooker and Hooker (2018) for the argument that the achievements of auto-
mated science make the case for empiricism over scientific realism, and Buckner 
(2018, 2023) on the link between deep learning and empiricist philosophy of mind.
35.  Mach was also an inspirational figure for twentieth-century logical empiricists 
like Hempel (Stadler 2021).
36.  “As it is usually understood, that doctrine [of the economy of thought] holds 
that scientific laws and abstract class terms are tools for compiling and organizing 
experience by means of the fewest possible concepts, a mastery that is useful for the 
prediction and control of events.” (Banks 2004, 23)
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the notion of material substance.37 Mach rejected the question of ontological 

commitment to the terms of physical theories, such as “force” and “atom,” 

which he regarded instead as conceptual tools of science (Mach 1883/1919, 

chapter IV). This results in a picture, in opposition to Dear’s one, in which 

only instrumentality properly belongs to science, and natural philosophy has 

no place. To the extent that the incorporation of machine learning into sci-

ence leads to an attenuation of nonempirical concerns with understanding, 

as normally defined, the development is a progressive one.38

It is to be noted that Mach at times defined science in such a way that 

makes it amenable to automation through machine learning, writing that “sci-

ence itself, therefore, may be regarded as a minimal problem, consisting of the 

completest possible presentment of facts with the least possible expenditure 

of thought” (Mach 1883/1919, 490).39 The connection here is that in Mach’s 

view, the world consists only of elements, which we might analogize to data 

points, and the point of science is to represent them as compactly as possible 

so predictions can be made about the outcome of events—the unfolding of 

new data. In Mach’s day, the best means for that was the numerical represen

tation of data observed via the senses and the formulation of quantitative the-

ories (laws of nature) describing the relationships among data, thus affording 

predictions. But more generally, the task is to discover the best methods for 

data processing—best in the sense of most efficiently representing the data, 

for purposes of prediction and control. The automated production of classi-

fiers and predictors for large data sets, through machine learning, does exactly 

37.  See Skidelsky (2003, 367): “The development of modern science, writes Mach, ‘con-
sists in the fact that the original, naïve concepts of substance (Stoffvorstellungen) are 
recognised to be unnecessary, that we acknowledge real constancy and substantiality to 
lie in discovered quantitative relations, expressed in the fulfilment of equations, and do 
not seek some ‘lump’ outside of thought.’ ” However, I grant that the question of what 
way Mach was opposed to metaphysics is itself rather complicated (Guzzardi 2021).
38.  Mach (1872/1911, 55–56) equates understanding with “analysis alone”; that is, 
reduction to fundamental facts (quoted in Guzzardi 2021, 176). This stands against 
the notion of making nature intelligible, employed in this chapter (Dear 2006), 
and against the meaning-making notion of understanding that I will develop in sec-
tion 9.5 of chapter 9.
39.  However, see Patton (2021, 152, 155). Taken out of context of Mach’s other writ-
ings, focus on this passage can lead to an overly narrow view of his philosophy of 
science. The ultraempiricism that I am aligning here with automated science is one 
strand of Mach, but more of a caricature than a true portrait. I thank Richard Staley 
for pressing me on this point.
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that. Indeed, the fact that the task of processing all that data can be offloaded 

from the human mind to the machine allows even greater efficiency. Mach 

observed that mathematics, even when done with pencil and paper, is a way 

to release scientists from mental labor, and he looked forward to the possibil-

ity of this being fully accomplished with mechanical computers:

A total disburdening of the mind can be effected in mathematical operations. 

This happens where operations of counting hitherto performed are symbolised by 

mechanical operations with signs, and our brain energy, instead of being wasted 

on the repetition of old operations, is spared for more important tasks. . . . ​The 

drudgery of computation may even be relegated to a machine. Several different 

types of calculating machines are actually in practical use. The earliest of these (of 

any complexity) was the difference-engine of Babbage, who was familiar with the 

ideas here presented. (Mach 1883/1919, 488)

The paradox here is that with progress, science becomes more and more 

thoughtless. Thinking about nature, attempting to understand it, is the lum-

bering weight of the metaphysical legacy of science. The promise of machines 

is not that they will do our thinking for us, but that they will speed up the 

process of eliminating thought from routine science.

Yet, the very thoughtlessness of ANNs, revealed in their being pressed into 

making misclassifications indicating, for example, that they really have no idea 

what a cat is, is what for many prohibits them from being reliability used as 

autonomous scientific agents.40 The significance of these limitations of ANNs, 

as clues about something different going on in the lives of our minds, will be 

discussed in chapter 9. For now, I will conclude that this form of AI presents 

us with a pure embodiment of empiricist principles in philosophy of science. 

To the extent that we find them wanting, that we are dissatisfied with their 

capacity to do science by optimizing for prediction and control while at the 

same time redefining or removing understanding from the agenda of science, 

we are also committed to critique of those empiricist principles.

We have now worked through three lines of analysis concerning the 

implications of machine learning for our conception of neuroscience, and 

40.  I am alluding here to the vulnerability of deep convolutional neural networks 
(DCNNs) to adversarial attacks (misclassifications induced by spurious changes to 
images), which will be discussed further in section  9.5 of chapter  9. See Buckner 
(2020) on the problem of adversarial vulnerability for automated science. Of course, 
deep learning is a fast moving field, and there is currently an unresolved debate over 
whether a different class of ANNs, transformers, does demonstrate understanding.
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to some extent for science more generally. Each of them has something to 

recommend it. The first makes clear a limit of science in the complexity of 

the brain. The second shows how the relationship between instrumental-

ity and understanding can evolve, and neuroscience can continue more or 

less as before in spite of acknowledgment of this limit. The third option 

reveals the deep connection between automated science and the ideals and 

tenets of empiricist philosophy of science. One word of warning about the 

second option is that the proposals for redirecting understanding are very 

programmatic, and it remains to be seen if these new explanatory projects 

can succeed. What we may conclude is that, as a matter of research inter-

est, neuroscientists have not given up on trying to understand the brain. 

But we cannot presume at this point in time that brain will be understood 

in these different ways. It may be that the limitations on neuroscientitific 

understanding of the brain, as described under the first scenario, are more 

complete than these investigators have hoped.

8.4  The Fixed Net of the Machine

Our intellect, when it follows its natural bent, proceeds on the one hand by solid percep-

tions, and on the other by stable conceptions. It starts from the immobile and only con-

ceives and expresses movement as a function of immobility. It takes up its position 

in ready-made concepts, and endeavors to catch in them, as in a net, something of 

the reality which passes. This is certainly not done in order to obtain an internal 

and metaphysical knowledge of the real, but simply in order to utilize the real, each 

concept (as also each sensation) being a practical question which our activity puts to 

reality and to which reality replies, as must be done in business, by a Yes or a No. 

But in doing that, it lets escape that which is the very essence of the real.

—Henri Bergson (1903/1912, 66–67, emphasis in original, translation modified)

This chapter opened with an examination of the leading role of technology 

in science through the making of devices that serve as model systems and 

offer an understanding of the forces and processes, presumed to be at work 

equally in artifactual and natural things. This was followed by an explora-

tion of the consequences that may arise in neuroscience once the machines 

take on some of the inscrutability of things not made. We saw that there are 

limitations to scientific understanding revealed by the complexity of deep 

learning models, but neuroscientists hope that the task of understanding can 

be successfully redirected to new theoretical questions. Another hope that 
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might be entertained about the use of such models is that, with their lifelike 

complexity, they will overcome any scruples about the gulf between organic 

and machinic forms of information processing (Bongard and Levin 2021). 

In other words, through the creation and reverse engineering of brainlike 

machines, scientists may surpass the limit marked at the end of section 8.2, 

that of the brain itself being inaccessible, only approximately grasped through 

the medium of artificial analogs that are in too many ways unlike it.

The thought is that with the building of such complicated models, as dif

ferent as they are with respect to material substrate, the neuroscientist has at 

least ceased to rely on the simplifications imposed by the traditional search 

for models that expressed interpretable theories of neural processing. Even 

though the ANN is still an artificial proxy for the actual brain, it most impor-

tantly lacks the idealizations of previous models needed to keep their mathe

matics workable, such as assumptions about linearity. Moreover, its design is 

somewhat brain-inspired (see section 5.1.3 in chapter 5), and like a real neural 

network, it is self-organizing, not tailor-made to do a task, discovering solu-

tions to classification problems through its own iterative learning procedures. 

Although learning algorithms such as backpropagation are not biomimetic, 

at least the principle of an adaptive system is. ANNs have the attraction of, 

on the one hand, attaining human-level performance on some tasks, such as 

rapid object and face recognition in natural scenes; and, on the other hand, 

being far more accessible than the actual brain. The architecture and train-

ing process (learning rules and developmental history) of the ANN are fully 

known to the researcher, so the hope is that the many things that may be 

discovered about its operating principles could reasonably transfer to neural 

networks in the brain.

According to the view, argued by Cao and Yamins (2021a,b), that ANNs 

and BNNs hit upon interchangeable solutions to well-constrained, difficult 

tasks, the ANN appears not as a model of a brain area—with the gap or dis-

tance between representation or target that this entails—but as another mem-

ber of the same class of information-processing systems. What is more, the 

focus on these proposed similarities encourages the thought that the brain 

itself is a kind of adaptive model: a model of the sensory data delivered to it 

in the course of life. This is the view of Hasson et al. (2020, 423), who write 

that in spite of the substantial differences between them, ANNs and BNNs 

“belong to the same family of direct-fit models,” whose design specifications 

are simple and therefore intelligible. That said, I have since chapter 4 of this 
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book argued against temptations of this sort, to neglect the dissimilarities 

between models and things modeled and to bank on the irrelevance of the 

details over which they differ. This argument, therefore, needs to be restated.

I will begin with a quotation from a group of neuroscientists referred to in 

chapter 5 on the utility of ANNs as “model organisms” in experiments using 

complex ethological tasks. They give some words of caution: “One large dif-

ference is that ANNs are trained only once during an optimization process 

and the connection weights are not subsequently modified, while animals 

continually update and refine their behavior. This discrepancy seems fine for 

understanding ‘instantaneous snapshots’ of animal behavior but is highly 

problematic for understanding how animals learn or how their neural repre

sentations evolve over time” (Musall, Urai, et al. 2019, 235).”41

In essence, what is different about the brain is its tendency for contin-

ual adaptation and learning from new experience. This should be taken in 

relation to chapter 7’s depiction of the Heraclitean complexity of the brain. 

The brain is an organ in a living body, made up of metabolizing cells, such 

that neural tissue is processual and never fixed; it must always be changing 

itself just to maintain whatever functionality it has. Plasticity is ever-present, 

not restricted to a developmental phase. Thus, the continual refinement of 

behavior observed in animals, the finding that learning is continual and that 

there is no set demarcation between training phase and performance, is prob

ably due to the nervous system’s inherent tendency for material modifica-

tion, and hence plasticity. Machines, including digital computers running 

ANNs, have a different nature. They are made of nonliving components that 

are not inherently self-modifying. Moreover, machines—even ones like deep 

learning classifiers that have some self-organizing characteristics—are built 

to do a task and to keep doing it in the same way once built. That is why 

the division between learning and task operation is clearly demarcated for 

these devices. They are fixed nets, yet with them, the neuroscientist tries to 

capture, conceptually, the fundamentally changeable networks of the brain.

41.  Cf. Kell and McDermott (2019, 128): “The most fundamental difference between 
current DNNs [deep neural networks] and human perceptual systems may lie in the 
relative inflexibility of artificial networks—a trained network is typically limited to 
performing the tasks on which it is trained. Representations learned for one task can 
transfer to others, but usually require training a new classifier with many new train-
ing examples.”
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Attempts are being made to engineer ANNs to be more brainlike in this 

respect—to achieve what’s known as “lifelong machine learning,”42 which 

is an ironic label since these devices are never alive and lack the life tra-

jectories without which the developmental phases of animal cognition 

make no sense. As successful as they are at tasks for which they are trained, 

deep neural networks do not learn from new data without this disrupting 

performance on the previously trained task. They are liable to “catastrophic 

interference,” which in the worst case involves the complete overwriting 

of previously learned classifications (Parisi et al. 2019, 55).43 Needless to say, 

engineers are putting effort into the challenge of making more truly adap-

tive ANNs, with various solutions reviewed by Parisi and coauthors, such as 

the supplementation of new resources for the network when a new distri-

bution is to be learned and regularization techniques constraining how the 

weights between nodes will be updated, not to mention the brain-inspired 

method of “generative-replay”—the reactivation of memory patterns 

(van de Ven, Siegelmann, and Tolias 2020). The potential for these fixes 

to increase machine adaptability, however, does not undermine the more 

fundamental point that the difference between actual neural networks and 

ANNs lies with the fact that in the brain, the processes associated with 

learning and with doing are not cleanly separable. Musall et al. (2019, 235) 

note that “biological brains implement both the computation underlying 

behavior as well as the system that enables learning of novel behaviors,” 

whereas “ANNs . . . ​use externally available cost functions and optimiza-

tion routines, typically written as auxiliary software, which are discarded 

after training.”

42.  Parisi et al. (2019, 55) define this property as “the ability to continually learn 
over time by accommodating new knowledge while retaining previously learned 
experiences is referred to as continual or life-long learning. Such a continuous learn-
ing task has represented a long-standing challenge for machine learning and neural 
networks and, consequently, for the development of artificial intelligence (AI) sys-
tems.” Lifelong learning is a well-recognized, important capability of humans and 
other animals.
43.  Another problem is that the training regime of current deep neural networks 
assumes a fixed data distribution, with training data sampled from it. The ANN can-
not gracefully adapt to changes in the data distribution. In a more “ecological” train-
ing regime, in which new kinds of samples become available over time, it is found 
that performance on previously learned classifications decreases as the new ones are 
learned (Parisi et al. 2019, 55).

Downloaded from http://direct.mit.edu/books/book-pdf/2345162/book_9780262378628.pdf by guest on 25 March 2024



244	 Chapter 8

My disagreement with them over computational literalism—their descrip-

tion of the brain as implementing computations—does not undermine the 

point I want to draw from them. For it is certainly a truism about animal 

development that learning and performance have to take place concur-

rently. It is only in the controlled conditions of the psychology laboratory 

that the two tasks become demarcated, and these artificial scenarios are 

the ideal setting for machines in which workings of training and doing 

are modularized. We saw earlier in this chapter that Lillicrap and Kording 

(2019) propose that learning rules should replace canonical computations 

as a priority for theoretical neuroscience (section 8.3.2). Their reasoning is 

based on the finding that in machines, learning procedures are transparent 

(because explicitly coded), and therefore far more intelligible than the clas-

sification operations in the trained network. But given the relative lack of 

separation between processes for learning and performing behaviors in the 

brain, why should one bet that learning in brains will be more intelligible 

than other operations? Lillicrap and Kording’s proposal is symptomatic of a 

failure to attend to what is different between these two kinds of networks.

Thus, we can conclude that a limit to the understanding of the brain by 

way of building brainlike machines is still in place. Adaptability, the ability 

to learn, is the basis of intelligence in humans and other animals. The form 

that animal learning takes is conditioned by the inherent plasticity of neu-

ral tissue, which is in turn derived from its being made of living cells. What 

is more, the form that animal learning takes is shaped by the learner being 

an organism, something self-driven, with its own life trajectory, needs, and 

motivations. It is doubtful that this mode of learning, which supports flex-

ible behavior in uncontrolled circumstances, can be captured in nonliving 

machines even if machine learning can match animal learning for a variety 

of prespecified tasks. It is true that learning in the artificial network is easier 

to understand than its trained classification procedures, but it would be a 

mistake to assume this to be the case in living systems in which adaptation 

is not a discrete stage in an engineer’s flowchart, but a mode of being.
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We believe that men and other animals are like machines from the scientific 

standpoint because we believe that the only fruitful methods for the study of 

human and animal behavior are the methods applicable to the behavior of 

mechanical objects as well. Thus, our main reason for selecting the terms in ques-

tion was to emphasize that, as objects of scientific enquiry, humans do not differ 

from machines.

—Arturo Rosenblueth and Norbert Wiener (1950, 326)

I am open to the idea that a worm with 302 neurons is conscious, so I am open to 

the idea that GPT-3 with 175 billion parameters is conscious too.

—David Chalmers (2020)

9.1  Revisiting the Literal Interpretation

In the preceding chapters, I have presented neuroscience as a discipline, 

like any other in science, that is reliant on certain modes of dealing with its 

objects, which project things onto a higher plane of simplicity. Attendant 

to this, I have urged caution in the interpretation of the simplified products 

of neuroscientific research. To say that the cortex is literally computing the 

function stated in a model is, I argued in chapter 4, to identify two fundamen-

tally different kinds of things. It is like pouring a gallon of water over an egg 

cup and convincing yourself that the overflow is irrelevant to the makeup of 

the gallon. And yet the literal interpretation of computational models is the 

dominant one within theoretical neuroscience and among technologists and 

naturalistically inclined philosophers. In chapter 8, we saw that this quasi-

consensus makes sense, given that the centuries-old methodology of using 

artificial workings as exemplars for natural processes has tended to elide the 

9  Revisiting the Fallacy of Misplaced Concreteness
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distinction between the products of technology and objects not made by 

human hand.

This chapter is about the negative consequences, for philosophy, of the lit-

eral interpretation of computational models. The fallacy of misplaced concrete-

ness is the mistake of taking the abstractions of science for concrete reality, 

confusing the model with the target, the map with the territory (Whitehead 

1925/1967, 51–55). The literal interpretation is guilty of this, but the error 

within routine science is tolerable. There is an efficiency gain in assum-

ing that the research object is as the streamlined model, not the concrete, 

ungainly thing. A cost comes from the presence of unknown unknowns and 

in keeping the door closed to possible discoveries. Still, the costs are offset 

by the pluralism of science and the likelihood that another researcher, with 

a different kind of model, will open a new door. Naturalistic philosophers 

of mind look to science to tell them about the natures of those objects of 

research—what is memory, vision, understanding, and consciousness? Their 

concern is not with how things are with the model—which they take too 

often to be a transparent, undistorting medium—but in our brains and cog-

nitive processes. If the fallacy of misplaced concreteness occurs here—if an 

abstraction of a model, imposed by practical necessity, is mistaken for a dis-

covery about how the brain is—then this brings about an irredeemable flaw 

in the logic of the inquiry.

In this chapter, I will argue that popular philosophical views about the 

potential of machine intelligence are the product of the fallacy that comes 

with the literal interpretation. The current, dominant paradigm of AI research 

builds models that are loosely “brain inspired,” with the goal of engineering 

humanlike cognitive performance on predefined tasks such as object recogni-

tion, language production, or game play. Many of these expert systems, which 

are artificial neural networks (ANNs) trained to excel at one such task, have 

achieved superhuman abilities. A noted example that brought deep reinforce-

ment learning to the attention of the world a few years ago is AlphaGo, a cre-

ation of DeepMind, which unexpectedly beat the world grandmaster 4–1 in 

its first tournament outing. This program was outdone by the even more 

powerful AlphaGo Zero (Silver et al. 2017), with both versions playing Go 

beyond a level that a human could ever now hope to attain. At the same time, 

ANNs have demonstrated a range of surprising failures seeming to stem from 

their expert nature, which is to say their lack of general intelligence, basic 

common sense. The question is whether the current, silicon-based machine 
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learning technology, when scaled up to some sufficient network size, will 

deliver humanlike general intelligence, with the characteristics now lacking 

in current AIs.

Expectations of artificial general intelligence (AGI) have been high, but 

as I will argue, ill founded. The failures of ANNs to obtain the capacities 

associated with general intelligence, such as sentience and the ability to 

apply learned knowledge to fundamentally novel situations, are not sur-

prising if one considers the analogical interpretation of computational 

models proposed in chapter 4, which I will summarize again here. My view 

is that computational models of neural systems should not be interpreted as 

approximately true representations of computations actually performed by 

the brain. Even though the brain is not, literally, an evolved computer, such 

models earn their keep by providing a framework for a drastic abstraction 

away from the complexity of neural systems. The computational frame-

work excuses an otherwise unjustified separation between the entities and 

processes within the brain said to carry out information processing, with 

the remaining systems classified as metabolic support.

ANNs employed for machine learning today are founded on the work of 

much earlier theorists. For example, McCulloch and Pitts (1943) brought 

a crucial abstraction to neuroscience by positing that a neuron, qua infor-

mation processor, is simply an input-output device that takes a weighted 

sum of impulses coming in from its dendrites and sends a message to next-

layer neurons through its axon. Rosenblatt (1958) combined the ideal of 

the artificial neuron, with simplified models of learning inherited, via the 

cell assembly theory of Donald Hebb (1949, 1960), from behaviorism. At a 

very high level of abstraction, the nodes in ANNs are somewhat like actual 

neurons, and neural plasticity is in part somewhat like the adjustment of 

connection weights within an ANN. Whereas the literal interpretation pro-

poses that the abstracted commonalities are computational structures and 

rules implemented both in the brain and artificial hardware of the model, 

I decline to infer that these exist in the brain independently of its repre

sentation by the modeler as a computing system. Instead, I hold that an 

ideal pattern—massaged out of the neural system through the methods of 

experimentation and data handling, abstraction, and idealization—is what 

is actually represented and instantiated in neurocomputational models.

In other words, the analogical interpretation declines to think of the 

abstracted structure depicted in the model as a real, inherent feature of 
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the concrete system. With this, our attention is drawn to the disanalogies 

between brains and computers, and we consider the computational model to 

be no more than a lens, not transparent and somewhat distorting, through 

which neural data are systematized and made intelligible to the researcher. 

The obvious possibility that then comes to mind is that it is those charac-

teristics of animals and their nervous systems not shared with computers, 

that are responsible for those capacities of general intelligence, capacities 

not replicable in machines according to indications available so far.1 This 

chapter will focus on two of these features—phenomenal consciousness and 

understanding.2

Section 9.2 will discuss, using the example of visual object recognition, 

how computational explanation leads to an explanatory gap: ANNs offer 

explanations of object recognition, but not the visual awareness that goes 

with visual classification in a range of animals under normal viewing condi-

tions. In section 9.3, I explain why we should not expect ANNs to scale up to 

consciousness. Next, in section 9.4, I show that philosophical arguments for 

the in principle possibility of consciousness in organic machines are grounded 

in a fallacy of misplaced concreteness, in their assumption of the equivalence 

of brains and hypothetical silicon-based “isomorphs.” In effect, mine is a new 

argument for the position known as “biological naturalism,” the view that 

inorganic machines cannot become conscious.3 Then, in section 9.5, I move 

1.  That is my assessment of the current situation. Attention-grabbing claims for pro
gress toward AGI (e.g. Bubeck et al. 2023) rest on notions of ANNs showing emergent 
capabilities, a notion that is problematic (Schaeffer et al 2023).
2.  By “phenomenal consciousness,” I mean qualitative experience—that there is 
something that it is like to be an animal with phenomenal consciousness. I note that 
self-consciousness, awareness of oneself as a being who experiences things, is another 
important characteristic of general intelligence, but it is not under discussion here. 
Understanding has been far less widely treated in the philosophy of mind, although the 
article “Minds, Brains, and Programs” by Searle (1980) is one instance. In cases like Sear-
le’s, understanding can be taken as the capacity not only to manipulate symbols, but 
also to appreciate that those symbols have meanings and are part of a nexus of mean-
ings with referents beyond the subject. Furthermore, the capacity of understanding is 
indispensable for our sense of having a coherent world around us. Although “under-
stand” is a success verb, I treat understanding as the task of continually trying to make 
sense of the world, often not achieved (section 9.5). In my view, systems that do not 
even attempt to understand should not be considered intelligent, properly speaking.
3.  The term is due to Searle (1992, 1), who defines “biological naturalism” as the view 
that “mental phenomena are caused by neurophysiological processes in the brain and 
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to the topic of understanding, a feature of human intelligence exemplified 

in scientific attempts to make sense of objects and processes. Continuing the 

line of thought started in chapter 8 (section 8.4.3), I hold that discussions 

over the potential of automated science must acknowledge the obstacle posed 

by the lack of understanding in ANNs. And with a picture of the difference 

between human and machine intelligence in place, we have a better basis to 

say why understanding is indispensable and why machines may be expected 

to lack it. Finally, section 9.6 presents the conclusions of the chapter.

9.2  Locating an Explanatory Gap

The questions which can be asked concerning this phenomenon in a theoretical 

brain model (where we are not free to assume any intrinsic similarity of processes 

to those in the human brain) are questions of what can be discriminated, “seen,” 

“attended to,” or “remembered” under specified conditions. All that we can say, in 

the last analysis, is that the system acts as if it were conscious, leaving the question 

of the actual existence of consciousness in the system for metaphysicists to consider.

—Frank Rosenblatt (1962, 66)

When I flick through a photo album, looking at the people I know, I can 

put a name to the faces, and in doing that, I have a visual experience of 

those faces—there are colors and configurations and textures that show 

up in my awareness. This experience is what I will refer to as visual phe-

nomenal consciousness.4 All our sensory modalities come with phenomenal 

consciousness, though that is not to say that we are conscious of all that 

we perceptually discriminate or that we do not sense anything when in a 

nonconscious state, such as deep sleep. There are now numerous computa-

tional models of perceptual systems offering explanations of the detection 

and discriminatory capacities of humans and other animals. But they are 

silent about the phenomenal consciousness that accompanies perception 

are themselves features of the brain.” However, as the term is used in the debate over 
AI consciousness (see section 9.4), it simply means the view that consciousness cannot 
be achieved by a nonliving artifact, such as an electronic computer. Hence, my use of 
the term does not subscribe to the concrete claims that Searle puts forward here about 
the brain—by itself—being the cause of mental phenomena.
4.  This is also known as the “what it’s like” of visual perception. I use the word 
“sentient” to mean the kind of creature that can have phenomenal consciousness, 
regardless of whether there is self-consciousness.
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in humans and, we may presume, many other animals. There are now 

numerous machines that can make certain visual classifications equivalent 

to a human’s, correctly attaching names to faces. And yet they have no 

awareness accompanying those discriminations.5 This section is about the 

significance of this silence and this difference.

In philosophy, the computational theory of mind asserts that cognitive 

processes (including perception, motor control, and affectivity) are essen-

tially computational processes (Sprevak and Colombo 2019).6 To be a cog-

nitive creature is to have a brain that implements computations honed by 

natural selection to support intelligent behavior. This theory is a popular 

way to naturalize the mind—to show how mind is the result of ordinary 

physical occurrences—by positing that just as a manufactured computer is a 

lump of matter orchestrated in such a way as to perform cognitive feats like 

logic and arithmetic, so the brain supports cognition through the assem-

blage of its material parts into a computational system. Animal intelligence 

can thus be accounted for as no more mysterious than the workings of any 

elaborate machine. It is assumed that consciousness is the result of some of 

the particular kinds of computations occurring in the brains of those crea-

tures that have consciousness, and if the computations for consciousness 

were discovered, they could in principle be implemented in a machine, 

resulting in a system with the same form of awareness as the animal.

The computational theory of mind pairs with the literal interpretation 

of neuroscientific models: it is asserted that the brain is literally performing 

computations and that these account for an animal’s cognitive capacities. A 

task for neuroscience, therefore, is to find out what those computations are 

by presenting them, to as close an approximation as possible, in a model. 

Such discoveries yield not only computational explanations of cognition, 

but also the possibility of replicating cognition in machines. In chapter 4, 

I contrasted the literal interpretation of neurocomputational models with 

5.  This is the most reasonable assumption to make about these systems, although 
some may dispute it.
6.  Piccinini (2020, chapter 14) makes a distinction between the computational theory 
of cognition and the computational theory of mind—the second includes consciousness 
within its explanatory scope, and the first does not. On his view, only the noncon-
scious capabilities of the mind are fully explicable through computational models, 
whereas the conscious features may be medium dependent and therefore not open to 
computational explanation—a view that I am sympathetic to.
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my preferred analogical one. I attended to the fact that neurocomputa-

tional models, like all scientific models, are abstractions whose value to the 

researcher lies in their suppression of details present in the concrete system 

but not relevant to the scientific task at hand. Thus the brain, under experi-

mental conditions, with data analyzed in certain ways, yields patterns of 

activity like the dependency relationships presented in the model (the ideal 

patterns), and one can say for this reason that the brain is somewhat like a 

computer, but we cannot say that it is an evolved computer.

Abstraction is the process of leaving out details in a representation of 

the target under investigation. Occasionally, the very details left out of the 

abstract representation may be critical to another task or relevant to the expla-

nation of a different phenomenon. This is the problem with consciousness, 

so I will argue. In chapter 4, I accounted for the wide uptake of computa-

tional models in neuroscience as being due to the computational framework 

licensing a powerful abstraction away from neurobiological particularities 

not shared between computers and brains. This permits neuroscientists to 

ignore countless anatomical, biochemical, and physiological details when 

offering computational explanations of cognitive processes. Computational 

models of processes like visual perception are abstractions in the sense that 

they purposefully disregard the complexity that is present in the nervous 

system stemming from the fact that it is made of living tissue. The computa-

tional approach comes with a commitment to establishing a correspondence 

between visual processing in nonsentient machines (i.e., digital computers)7 

and sentient animals.8 Therefore, the explanatory framework must abstract 

away from the consciousness that an animal has and the computer lacks.9 

7.  That is, actual machines, not hypothetical future machines that some have argued 
might become conscious (see section 9.4). The point is that the analogy source is the 
machines familiar to scientists today, which are clearly not conscious.
8.  It is taken as read, for the purposes of this argument, that the cognitive processes 
being modeled are ones accompanied by consciousness in the animal, and that all the 
animals in question are sentient, which is indisputable for models of perception in 
humans and other mammals. This is not to say that there are no models of the cogni-
tive processes not accompanied by consciousness, or of ones that occur in animals that 
may be nonsentient.
9.  Bridewell and Isaac (2021) make a similar observation, but draw out a positive 
lesson. They propose that this dissimilarity between animals and computers can be 
leveraged to increase scientists’ knowledge of where consciousness is and is not rel-
evant to cognition, which they call an “apophatic” methodology for consciousness 
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This, I contend, leads to an explanatory gap for the computational approach 

that is puzzling under the literal interpretation but completely predictable 

under the analogical interpretation. A helpful consequence of the analogi-

cal interpretation is that it allows us to diagnose why this explanatory gap 

appears.

I will now state the argument and then provide more details of the exam-

ple. The first point is that computational models of the brain are power

ful abstractions, permitting neuroscientists to ignore countless biological 

details. With the analogical interpretation of neurocomputational models, 

one expects as many disanalogies as analogies between brains and comput-

ing systems. An important disanalogy between brains and computers is that 

brains are an organ of sentient animals,10 whereas no computing systems are 

conscious. On the literal interpretation, however, computation is the essence 

of the brain’s cognitive capacities. One ignores disanalogies, the features not 

shared between brains and computers, as irrelevant to the explanation of 

cognition. For example, deep convolutional neural networks (DCNNs) can 

achieve human-equivalent performance in the task of core object recognition 

(COR),11 but without the visual phenomenal consciousness found in pri-

mates. This yields a computational explanation of COR, but on the literal 

interpretation of the model, there should be puzzlement that the model can-

not explain, and has no potential to explain, why or how there is visual 

phenomenal consciousness in animals performing this task. In contrast, 

from the analogical interpretation, it is clear that it is a precondition of the 

explanatory framework that consciousness is irrelevant for the explanation 

of COR: consciousness must be assumed irrelevant because the computa-

tional framework can encompass only characteristics posited to be shared 

science. In contrast, I emphasize the distorting effect of attempting always to explain 
the cognition of sentient animals through the medium of nonsentient computers.
10.  In most philosophical accounts of consciousness, it is acceptable to say that it is 
the brain that is conscious (e.g., Prinz 2012), but current ignorance about the basis 
of consciousness, I prefer not to commit myself on the question of whether the term 
“consciousness” is best employed as a characteristic of the whole animal, its mind, or 
an organ within it (the brain).
11.  A cautionary note from Cantwell Smith (2019, 50) is that the ANNs are not 
doing object recognition in any rich sense. Concretely, what it does is learn map-
pings between pixel strings of image input and letter-string output—the words that 
humans use to refer to objects in the images.
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between brains and computers. Thus, consciousness presents an explanatory 

gap for the computational perspective, but it is not a gap just there in nature. 

Rather, it is a built-in lacuna of the explanatory framework.

It is worth saying more about the example of core visual object recogni-

tion, also known as “preattentive recognition” (Serre 2019, 416). This is the 

object recognition that humans and other primates perform quickly (within 

100 milliseconds), independently of attention or top-down influence of 

scene interpretation (Cadieu et al. 2014; Kheradpisheh et al. 2016). It has 

been associated with activity in the ventral stream of the primate visual cor-

tex, running from primary visual cortex (V1) to inferotemporal cortex (IT). 

The ventral stream was hypothesized by Milner and Goodale (1995) to be 

responsible for visual consciousness and object recognition, in contrast with 

the dorsal stream, serving nonconscious visual guidance for action. In my 

argument, I am not claiming that objects are never recognized unconsciously, 

nor that the ventral stream is the neural correlate of visual phenomenal con-

sciousness. My point is that in the behavioral paradigm of COR, conscious-

ness undoubtedly accompanies object recognition for humans, and it would 

not be reasonable to doubt that other primates have similar experiences. 

Although introspective reports of awareness may be deemed unreliable in 

some threshold cases (e.g., when stimuli have very short presentation times 

of less than 10 milliseconds), there are no grounds to be skeptical that when 

people report visual awareness of a stimulus presented in the viewing condi-

tions used in these object recognition experiments, they actually have those 

experiences.

Very shortly after the breakthrough performances of DCNNs on visual 

object classification, neuroscientists began to look for similarities between 

the architecture (i.e., the many-layered hierarchy) and “representations” 

(including receptive field structure) between DCNNs and the ventral stream.12 

Such models were found to offer the best predictions to date of the responses 

of neurons in areas of the ventral visual system such as V4 and IT that had 

traditionally been hard to model (Yamins et al. 2014). Various researchers, 

12.  A significant result here is AlexNet, by Krizhevsky, Sutskever, and Hinton (2012). 
ResNet, by He et al. (2016), is the first DCNN considered to have surpassed human-
level accuracy at object classification. The story of the impact of these developments 
on vision science is recounted by VanRullen (2017), Serre (2019), and Yuille and Liu 
(2021).
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such as Khaligh-Razavi and Kriegeskorte (2014), have argued, on the basis 

of observed similarities, that the DCNN provides an explanation of the neu-

ral activity underlying primate object classification, a view also echoed in 

the philosophical literature (Cao and Yamins 2021a).

It must be appreciated that the DCNN model is in no way presented 

as being in the business of explaining visual phenomenal consciousness. 

Instead, the researchers argue for its performance equivalence in the behav-

ioral task, which is then accounted for through the demonstration of similari-

ties between the DCNN and the ventral stream regarding layered, hierarchical 

organization, representations, and computational operations such as convo-

lution. The key point for us is that there is not even a whiff of a hint at how 

such a model could explain those conscious experiences that occur in the 

primate but not in the computer. And to the literalist about neurocomputa-

tional models, this should be puzzling because the computational model is 

supposed to tell us what COR essentially is; yet it has no scope to explain how 

or why consciousness accompanies object recognition in animals. Thus, the 

computational account faces an explanatory gap that is not surprising on the 

analogical interpretation, for it is clear that it is a precondition of the explana-

tory framework that visual consciousness is irrelevant for the explanation of 

COR. This is because the program of computational explanation depends on 

the prior assumption that what is relevant to the explanation of a cognitive 

capacity, like core object recognition, is the proposed set of features in com-

mon between brains and computers. Consciousness cannot be among the 

commonalities since animals have it, but no known machine does. I diag-

nose this as the source of an explanatory gap: the fact that the computational 

framework must restrict itself to explaining cognitive capacities thought to 

be shared between animals and computers, in terms of processes and features 

also thought to be common to both classes, and since consciousness is not 

one of them, it can be no part of such explanatory programs.

To commit the fallacy of misplaced concreteness is to fall into the temp-

tation to reify the abstractions that make scientific modeling successful. It 

appears that the literal interpretation of neurocomputational models, as well 

as the computational theory of mind that goes hand in hand with it, are guilty 

of this substitution of the brain, with all its concrete details, for a mathemati-

cally precise, simplified version of some of its processes. In succumbing to the 

fallacy of misplaced concreteness, one forgets not only that the model is an 

abstraction, but also that in the decision to make certain simplifications, one 
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may be disallowing room in the explanatory framework for the very features 

for which an explanation may later be sought. To reiterate, it is an assump-

tion of the modeling framework, grounded in selective machine-organism 

analogies, that the differences between the analogy source and analogy target 

can be ignored for a circumscribed set of predictive and explanatory pur-

poses. There is obviously no guarantee that that assumption will hold when 

the framework is extended to attempt to explain additional features of the 

target beyond the initial scope of the analogy. But this obvious point is lost 

once the computational brain has replaced the concrete brain.

9.3  Scaling Up and Multitasking toward Machine Consciousness?

In this chapter, I am working toward an argument as to why, even in princi

ple, inorganic computing machines could not be conscious. This argument 

will not be completed until section 9.4, where the in principle positions of 

some philosophers will be discussed. At this stage, it should be appreciated 

that the observations of section 9.1 do not make much progress in the stated 

direction. This is because the claim that machines can or cannot be conscious 

is about the kinds of things that have sentience, whereas the identification of 

the explanatory gap is an epistemic matter—it just presents a conundrum for 

those whose faith in the computational theory of mind leads them to think 

that it will be possible to explain consciousness in computational terms. But 

a believer in the viability of machine consciousness can easily sidestep such 

concerns: even if a computational explanation of consciousness cannot be 

achieved, so the response goes, it can still be the case that brains (or their 

owners)13 are conscious because brains are very large, densely connected neu-

ral network computers. So, the idea goes, if you keep scaling up the ANNs, 

eventually you might build a conscious machine.

However, it turns out that there are important lessons to be gleaned 

from my criticisms of the literal interpretation, which apply equally to this 

scaling-up idea. There is an argument to be made about why we should 

not expect expert system ANNs, of the sort built so far, to grow into an AI 

that is more humanlike, to become AGI with sentience. The relevant issue is 

that there is only an applicable similarity between the ANN and the organic 

13.  This is to be neutral on the question of whether it is animals or their neural 
organs that are sentient, properly speaking.
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system when one considers the narrowly specified task that the ANN has 

learned to perform. The scope of the analogy has built-in limitations that 

are neglected by the literal interpretation. However, the literal interpreta-

tion gets implicated in the view that the ANN has tapped into something 

essential to organic cognition—namely, a kind of computation first realized 

in the brain—and that this coinstantiation of a computation is the basis of 

animal-equivalent performance in a learned task. In this view, it then makes 

sense to think of the trained ANN, as narrow in its expertise as it is, as hav-

ing nudged its foot over the threshold of having some set of characteristics 

that mark the difference between cognizing and mindless systems in nature, 

and therefore being at the early stages of the path toward AGI.14 And with 

this, there is imagining that each giant leap of an expert AI is also a small 

step toward AGI.15 The problem is that the literal interpretation fosters the 

idea that ANNs could scale up to sentience, and this expectation is due to its 

failure to recognize the narrow scope of the similarities between machines 

and organisms.

To see what is treacherous about this failure to acknowledge differences, 

let us imagine we are back in the nineteenth century, when steam loco-

motives had recently demonstrated their superior strength and speed at 

dragging heavy loads along flat surfaces—better than even the best-bred 

shire horses. Some Victorian technooptimists might start speculating that 

in the next few generations of steam technology, we will have locomotives 

capable of leaping fences and doing the other elaborate moves that horses 

14.  AGI is the stated long-term goal of research at AI company Google DeepMind. 
See https://www​.deepmind​.com​/about.
15.  This has long been a theme in press reports on expert system advances, such 
as the following report in Wired magazine on AlphaGo Zero: “The new DeepMind 
research has been published in the journal Nature and is another significant step 
towards the company’s goal of creating general artificial intelligence” (Burgess 2017).

Representatives of DeepMind have sometimes scaled back expectations—see, for 
instance, the chief executive office (CEO) Demis Hassabis interviewed by Wiggers 
(2018)—but it is clear that the literal interpretation of neurocomputation has a promi-
nent role in shaping researchers’ anticipations of how progress will be achieved: “Dis-
tilling intelligence into an algorithmic construct and comparing it to the human brain 
might yield insights into some of the deepest and the most enduring mysteries of the 
mind, such as the nature of creativity, dreams, and perhaps one day, even conscious-
ness” (Hassabis et al. 2017, 255).

Downloaded from http://direct.mit.edu/books/book-pdf/2345162/book_9780262378628.pdf by guest on 25 March 2024

https://www.deepmind.com/about


Revisiting the Fallacy of Misplaced Concreteness	 257

display in dressage competitions. But naturally such predictions would be 

laughed at because the success of steam technology is not a marker of it hav-

ing begun to capture the essence of biological locomotion. Dragging heavy 

loads along roads or tracks is not some core capacity of biological motion, 

but a very simplified kind of movement, which happens to have enormous 

economic significance. There is no reason to say that the locomotive is on 

the path to full-blown biofunctionality since it is no more than a machine 

built to do one task that the horse does, at performance levels beyond what 

would be possible for the animal. Indeed, its superbiological performance is 

due to it being so unnaturally specialized.

Just as a shire horse is like a locomotive in some respects—one can make 

functional comparisons with respect to the one task of dragging loads along 

flat surfaces, and hence engineers coined the term “horsepower,” applicable 

to machines as well—AlphaGo is like the human Lee Sedol in one respect, 

in the capacity for playing Go, and ChatGPT is like a person in that it can 

generate sentences. The analogy between the horse and locomotive breaks 

down when considering motor capacities other than haulage. I am saying 

that ANN-brain analogies should be expected to break down as soon as we 

consider tasks beyond those that the machine has been designed to repli-

cate. Hence, ChatGPT should not be thought of as containing the germ of 

a humanlike intelligence. The idea that a scaled -up, more powerful version 

of AlphaGo, or ChatGPT, will become a HAL 9000 then looks as absurd as 

our Victorian technooptimists expecting the emergence of hurdle-jumping 

steam engines.

The context of the invention of computers is actually similar to the one 

that saw the invention of steam engines, and machine manufacture. As 

historians have attested, computers, no less than locomotives, were inven

ted to perform one particular job for which there used to be full reliance 

on animal labor—but the animals in question were humans and the labor 

was cognitive rather than muscular (Daston 1994, 2018; Schaffer 1994). It 

is clear from Turing’s account of his conception of the computing machine 

that it was to perform all and only the cognitive work done by a human 

computer—a clerical laborer whose job it was to perform arithmetical cal-

culations: “Electronic computers are intended to carry out any definite rule 

of thumb process which could have been done by a human operator work-

ing in a disciplined but unintelligent manner” (Turing c.1950, quoted in 
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Copeland 2020).16 We should not ignore the fact that the behavior imitated 

by the invention is here classed as “unintelligent.”

Moreover, a general feature of machines is that they are precisely designed 

for reliable, predictable, expert performance in controlled conditions, such 

as in a factory or office or on roads or railways, and as such require a human-

created infrastructure to function. The unmade environment, being uncon-

trolled and less predictable, makes demands on behavioral flexibility not 

needed when conditions are artificially held fixed. Machines, operating 

within human-created cocoons or “micro-worlds,” can afford to be inflexible 

and superspecialized (Collins 1996), which is at least part of the explanation 

of their superhuman power. It is common to treat the brain as a computing 

machine whose designer is natural selection (e.g., Dennett 1995). This gets 

the machine-organ relationship wrong. Machines, including computers, 

are tools designed to duplicate just one of the countless functions that liv-

ing organs, like the brain, achieve. You should expect organs to have many 

capacities that machines do not have because unlike machines, they are not 

designed, and a fortiori, they are not designed with just one task in mind, to 

be performed repetitively within steady-state conditions.

Still, there is a difference that we must acknowledge between these cases 

of nineteenth- and twenty-first-century machine development, which is 

that horses were not relevant to the design of locomotives in the same 

way that brains have been the inspiration for specific features crucial 

to the design of the most advanced AI systems. As we saw in chapter 5, 

Fukushima’s deployment of Hubel and Wiesel’s hierarchical model of the 

visual cortex led to the “neocognitron,” and from there to current DCNNs. 

Similarly, the architecture of deep reinforcement learning took its lead from 

behaviorist psychology and neuroscience (Hassabis et al. 2017, 246–247). 

Taking the case of DCNNs used to model primate vision, it might reason-

ably be argued that they are much more biologically inspired than either 

the locomotive or the Turing machine. Therefore, it could be claimed 

that they work as well as they do because they replicate, on an abstract 

level, computations and representations actually occurring in the primate 

16.  Cf. “The class of problems capable of solution by the machine can be defined 
fairly specifically. They are [a subset of] those problems which can be solved by 
human clerical labour, working to fixed rules, and without understanding.” Turing 
(1945/2005), quoted in Copeland (2019).
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cortex.17 This pushes us back toward a literal interpretation of these ANNs, 

as instantiating neural computations, which is the germ of the expectation 

that larger-scale versions of such technologies will show more humanlike 

intelligence.

My first reply is that while the initial seed of an invention has often 

come from neuroscience, the pattern is that the majority of the subsequent 

engineering advances occur without reference to the brain (Marblestone 

et al. 2016, 1–2). Later work on the correlation between bioplausibility and 

performance in DCNNs weighed against the idea that the machines work 

as well as they do just because of their brainlike features (Schrimpf et al. 

2020). While in the earlier days of development, better performance on a 

visual object classification was achieved by adding brain-inspired features, 

this pattern is now broken, and performance gains are no longer achieved 

by making networks more biorealistic.

A recognized source of disanalogies between the characteristics of neu-

ral systems, like the primate ventral stream, and those of machines that 

are functionally equivalent in some respect is due to neural systems being 

involved with multiple operations at any one time, not neatly demarcated, 

whereas ANNs work exclusively on specific tasks. DCNNs trained for core 

object recognition currently provide the best predictions of responses in 

ventral-stream neurons to visual stimuli but they account only for a propor-

tion of the variance of IT neuronal responses. The thing to bear in mind 

here is that IT not only does core object recognition; it is also implicated 

in other behaviors, such as people’s remarkable capacity to recall having 

17.  This argument is as old as Aristotle. Newman (2004, 18–19) writes:

At one point (IV 3 381b3–9) [Meteorology,] Aristotle justifies his use of terms taken from cook-
ing, an artificial activity, to describe processes in nature. He claims that “art imitates nature,” 
using this fact to justify the imposition of technical terms such as “boiling” and “roasting” 
onto natural phenomena. Since artisans have learned their operations by imitating nature, it 
is unproblematic to use their technical language in describing the natural processes that they 
have copied. If one takes this to mean that these human artisanal processes are identical to their 
analogues in the natural world, it opens an avenue by which the imitation of nature—from 
which the processes are learned—could lead to the very perfecting about which Aristotle speaks 
at Physics II 8 199a15–17. Since this type of imitation would utilize natural processes, one could 
legitimately argue that it leads to a natural product and that it is in fact perfective.

That said, the erasure of the divide between nature and artifact is not a consistent 
position of Aristotle’s. As Newman (2004, 12–13) also reports, there is the example 
in the De Anima of Daedalus’s automaton that seems to be alive but actually is not.
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viewed thousands of different images (Standing 1973; Brady et  al. 2008; 

Meyer and Rust 2018).

The existence of these kinds of dissimilarity—that brain areas but not 

ANNs are multitasking—is not contestable. The further point is that the 

absence of multitasking may help to explain why some ANN responses are 

strikingly different from human ones. A nice case in point is the tendency 

seen in DCNNs trained over standard image databases to make object clas-

sifications according to the texture of an item rather than its shape (Baker 

et al. 2018; Geirhos et al. 2019; also see figure 9.1). In contrast, the human 

tendency is overwhelmingly toward classifications based on shape. Con-

sideration of human psychology and behavior—the fact that we are actors 

and conceptualizers as well as perceivers—makes sense of our shape bias. If 

I shave a cat (thus transforming its texture), it is still a cat for all intents and 

purposes. My concept of what a cat is needs to be based on more inherent 

features than its surface texture. Texture, though a reliable statistical marker 

of object identity, does not have the conceptual import that the form of an 

object does, and it does not have the same significance for deciding how 

to interact with most things: a pet cat might be chosen for its lovely, soft 

fur, but furriness alone does not make for a good pet (or else every cat lover 

could make do with a furry scarf).18

The upshot of this discussion of multitasking in the brain is just that scal-

ing up by itself, building bigger and bigger networks of the expert system 

type, should not be expected to bring about humanlike AGI, with conscious-

ness, if major disimilarities between animal and machine intelligence arise 

from multitasking in neural systems. It is not coincidental, therefore, that 

some have proposed that building multitasking machines, rather than expert 

systems, is one route to the engineering of AGI. To achieve more humanlike 

object recognition, one could conceivably build a fancier machine that does 

18.  Geirhos et al. (2019) show that a network can be made to classify by shape rather 
than texture, training it on an image set in which texture is not diagnostic for object 
identity. But this is something of a kludge since in the “training set” of human vision 
(in images of ordinary objects), texture is diagnostic for identity (if it weren’t, a DCNN 
could not learn to employ texture for recognition), and yet we classify by shape any-
way. The argument of Hermann, Chen, and Kornblith (2020) regarding “internal 
workings,” that the texture bias of DCNNs is due to a difference in the data they are 
exposed to, not a dissimilarity from the brain, is not convincing, as the study is not 
able to reproduce the overwhelming shape bias seen in human perception.
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some of the multitasking of the human ventral stream, which is involved in 

memorization, concept formation, and functionally integrated with brain 

areas involved in decision making and action planning. For example, Park 

et al. (2020) present VisualCOMET, a GPT-2 transformer architecture trained 

both on textual and pictorial representations of everyday scenes. It was 

found to be better at common sense reasoning than a purely text based sys-

tem, even when given text prompts. The aim of this research is to produce 

an ANN with “visual understanding.”19

However, if the idea is to engineer multifunctionality to arrive at an AI 

with consciousness, we hit a stumbling block with the question of what 

task would need to be added to grant the network visual phenomenal con-

sciousness when it does object recognition. Consciousness is not a capacity, 

like memorization, that is easy to benchmark and that could be tacked on to 

a machine with capabilities for object recognition. Recall from section 9.1 

that the precondition of the computational framework in AI and theoreti-

cal neuroscience is that consciousness is functionally epiphenomenal—

that it makes no difference to cognitive performance. It is a presupposition 

of the practice of computational explanation of cognitive capacities that 

19.  The Bolt-On approach to engineering AGI does, of course, have its skeptics, such 
as Loukides and Lorica (quoted in Mitchell 2019, 41): “A pile of narrow intelligences 
will never add up to a general intelligence. General intelligence isn’t about the num-
ber of abilities, but about the integration between those abilities.”

Beagle
(70% confidence)

Adversarial noise

+ ε x =

Ostrich
(99% confidence)

Figure 9.1
Illustration of object classification by a DCNN altered by superposition of a very-

low-contrast texture pattern (center) to the image of a beagle (left), resulting in the 

high-confidence classification of the photo as an ostrich, even though it looks iden-

tical to a human observer. (Source: Joshua Clymer, CC-BY-SA 4.0: https://commons​

.wikimedia​.org​/w​/index​.php​?curid​=126027330​.)

Downloaded from http://direct.mit.edu/books/book-pdf/2345162/book_9780262378628.pdf by guest on 25 March 2024

https://commons.wikimedia.org/w/index.php?curid=126027330
https://commons.wikimedia.org/w/index.php?curid=126027330


262	 Chapter 9

consciousness is irrelevant to those performances since the explanations 

may refer only to computations realized in nonsentient machines. The fact 

that consciousness is not functionally definable, in the sense that we can-

not say what extra thing a system with consciousness can do in comparison 

with a nonconscious peer, is a consequence of the computational frame-

work. But this prejudice against the functionality of consciousness presents 

the advocate of machine sentience with an obstacle. Because the framework 

of computational explanation stipulates that consciousness is irrelevant to 

cognition (being a characteristic not common between computers and ani-

mals), the framework can say nothing about the added value that conscious-

ness brings to the cognitive economy of an animal. Therefore, someone 

wishing to engineer consciousness through multitasking is given no clue as 

to what kind of cognitive and behavioral abilities would need to be added 

to have consciousness play a role in the cognitive economy of the machine. 

Technooptimists are left with no more than the idea that if a machine is 

built with as many nonconscious cognitive capacities as possible—in the 

limit, as many as the animal has—then consciousness will somehow follow 

along. This is just another version of the scaling-up idea—by building big-

ger and fancier AI, it will eventually spawn some consciousness.20

20.  It might be argued that even if there are obstacles to engineering-conscious 
machines, it is still possible to build machines that acquire generally intelligent capaci-
ties that transcend the limitations of expert systems. In particular, the idea is that 
through reinforcement learning in the right training environment, the agent will be 
pushed to acquire the ability to achieve a wide range of goals, the ability that Turner 
et al. (2021) call “power.” (I thank Jacob Pfau for this point.) There is, of course, inter
esting work in this area, and it is to be expected that ANNs trained through different 
methods will be more supple than networks, like the DCNNs for visual recognition 
discussed previously, which undergo supervised learning with very specific task func-
tions. That said, we still need to appreciate that what a digital computer essentially is 
a model of a very particular cognitive performance originally performed by human 
computers (see Turing, quoted in section 9.3), and this model disregards the aspects 
of human cognition that do not involve execution of coded instructions—just as the 
steam engine is a model of one isolated kind of horse locomotion. I have argued else-
where (Chirimuuta 2023b) that this basic fact puts limitations on the kind of general 
abilities that digital computers could acquire. I am skeptical about claims that sophis-
ticated twenty-first-century computers have emergent capabilities that amount to 
something qualitatively different from their being an immense aggregate of the basic 
operations of a digital machine. At the same time, I do not think that human cognition 
can be reduced to those basic digital operations.
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9.4  Against Conscious Isomorphs

“Technooptimism” is actually the name given by Susan Schneider (2019, 18) 

for the view that conscious computational systems are on the horizon. This 

view is set against biological naturalism, which asserts that “even the most 

sophisticated forms of AI will be devoid of inner experience” (Schneider 2019, 

18).21 In this section, I will defend biological naturalism by showing that the 

objections to this view, from both Schneider and David Chalmers, are guilty 

of a fallacy of misplaced concreteness, failing to appreciate that substrate-

independent computational models of the brain could only be impoverished 

abstractions. Both these philosophers’ arguments are in principle ones, but I 

will show how they are founded on the problematic, literal interpretation of 

neurocomputational models.

The position set up by Schneider (2019, 24) in opposition to biological 

naturalism is called computationalism about consciousness (CAC). It is the idea 

that “consciousness can be explained computationally, and further, the com-

putational details of a system fix the kind of conscious experiences that it has 

and whether it has any.” To flesh this out, Schneider introduces the notion of 

a precise isomorph, a system that mimics the computational organization—the 

“precise functional organization” (2019, 26)—of the brain of a sentient ani-

mal. CAC says that the isomorph will be conscious.22 The crucial notion is 

that of the “precise functional organisation” of a brain. Schneider (2019, 27) 

says that it is an “abstract pattern of causal interactions between the differ

ent components of your brain,” which could be represented in a graph. With 

21.  Schneider herself does not endorse either of these views, opting for a wait-and-
see approach, whereby “conscious machines, if they exist at all, may occur in certain 
architectures and not others, and they may require a deliberate engineering effort, 
called consciousness engineering’ ” (Schneider 2019, 34). Since this approach holds 
it as an open possibility, compatible with neuroscience as we know it, that inorganic 
computers may become conscious, it is just as much the target of my criticisms as the 
technooptimist one. Searle (1992) is cited for “biological naturalism.” See note 3 in 
this chapter on how the definition of the term has changed since Searle’s introduction 
of it. My defense of “biological naturalism,” via rejection of hypothetical electronic 
“isomorphs,” should not be taken to imply an endorsement of Searle’s positive case 
for the view.
22.  “What CAC amounts to is an in-principle endorsement of machine conscious-
ness: if we could create a precise isomorph, then it would be conscious” (Schneider 
2019, 25; emphasis in original).
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all the interactions of each neuron in the brain mapped, Schneider asserts 

that in principle, each neuron could be replaced by a silicon-based substitute 

neuron. The resulting being would be a precise isomorph, and with the func-

tional organization of the brain perfectly duplicated, the new creature would 

have all the mental characteristics of the original, including consciousness. 

The crucial move in the argument for CAC is that during the process of swap-

ping organic neurons for artificial ones, it is implausible that consciousness 

will fade out, or abruptly switch off, since artificial neurons are stipulated 

to preserve the functions of the old ones. Hence the most likely scenario, 

so the argument goes, is that consciousness holds steady, supporting CAC, 

the claim that the computational organization of the system determines its 

consciousness, independently of material constitution.

Schneider’s argument draws from one presented in Chalmers (1996) and 

reiterated in Chalmers (2014). Chalmers (2014, 105) admits that the claim 

that “functional isomorphs” are possible is a substantive one.23 And it is this 

claim that I will challenge. The isomorph argument that animal sentience 

can be replicated in an inorganic machine depends on the assumption that 

components of the brain (i.e., neurons) can have their input-output functions 

duplicated by objects made from an utterly different substrate—electronics, 

as opposed to living tissue. The plausibility of this assumption stems from 

people’s familiarity with quite simple neurocomputational models, such as 

receptive field models, that are sometimes presented as encapsulating all the 

input/output behavior of a neuron. The literal interpretation of such models 

fosters the idea that there is nothing more to the neuron, functionally speak-

ing, than that—nothing left out that is relevant to the cognition, all that’s 

missing being the inessential matter of implementation, the gooey details 

23.  Chalmers (2014, 105) does mention that functional isomorphs are not possible 
if some neurons “function in a noncomputable way, for example, so that a neuron’s 
input/output behavior cannot even be computationally simulated.” My argument 
here does not rest on any technical claims of noncomputability, but rather on the 
denial that neural structure and function can be separated in the way that is required 
for these simulations in inorganic machines. I argue elsewhere for the interdependence 
of structure and function in the brain, based on neuroscientists’ newfound apprecia-
tion for chemical signaling (Chirimuuta 2022b; see also Maley 2021). My rejection of 
these hypothetical simulations has a precursor in Haugeland’s (1981/1998a) notion of 
“second order messy” analog systems, like the metabolic network of a rat. Such systems 
do not afford digital simulation because it is not safe to leave any of their structural 
details out of the simulation, right down to the finest level of resolution, and hope to 
preserve function.
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of the stuff that the neuron is made of. But, as we have seen, that is the 

modeler’s convenient fiction, pretty harmless within the context of scientific 

research but requiring more scrutiny when exported to philosophical debate. 

Without the assumption of a division—marked unambiguously within the 

brain itself—between cognitive activity and mere metabolic support, there 

are no grounds to think that a model of a neuron that leaves the details of its 

actual operations could have a chance of replicating its role within a cogniz-

ing system.

We must grant Schneider and Chalmers that their scenarios are hypothet

ical, and it is open to them to stipulate that the artificial neurons of the 

isomorph are ideally precise models—they re-create all of the input-output 

behavior of an actual neuron, down to its barely detectible fluctuations in 

membrane voltage, due to minute changes in permeability to ions. And now 

the assumption that I would like to challenge is that the perfect replication of 

that neuron’s input-output behavior, down to the level of precision required 

for maintenance of organic cognition, could be anything other than a neu-

ron. Just as in the tale by Borges (1998), “On Exactitude in Science,” where 

the only perfect enough map of the empire had to be on the scale of the 

empire itself, the perfect input-output equivalent of the neuron would have 

to be something more like a duplicate than a model of the cell. Although 

neuroscientists do not tend to think that all the most minute of alterations in 

microchemistry are determinative of whole-neuron response profiles, given 

findings of maintenance of neuronal performance across changes in cell 

membrane constitution (O’Leary et al. 2013), for functional equivalence, we 

would still need to go well outside the realm of Schneider’s and Chalmers’s 

electronics substitution scenarios.

The critical point here is that given what is known about the workings 

of neurons, there is no reason to think that a functional equivalent could 

be achieved with a material substrate so unlike biological tissue as an elec-

tronic computer (cf. Ginsburg and Jablonka 2019, 467). Thinking that this is 

possible is just one of the seductions of the literal interpretation, its intima-

tion that the material details of neurons and the embodied context of the 

nervous system are merely the background to cognition and separable from 

it. Cognition itself, on this view, is substrate-independent. The technooptimis-

tic fantasy of uploading of consciousness gets its appeal from the idea that 

your conscious mind could be recreated in a nonliving machine with no 

material similarity to your brain and body, and given that the machine was 

never alive, it—unlike your body—never has to die. It is, of course, a fantasy 
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of immortality; but if the functionality of neurons is as utterly dependent 

on their being made from living materials as I contend, this is a complete 

impossibility.

A philosopher’s objection that will be raised here is that I have not speci-

fied my sense of possibility or said what I meant by “in principle.” Schnei-

der (2019, 25) is clear that her argument is about the logical or conceptual 

possibility of machine consciousness, whereas my critique boils down to 

facts about how actual neurons work, and as such can do no more than state 

the nomological impossibility of consciousness in inorganic machines24—its 

incompatibility with the workings of nature as we happen to find them. How-

ever, an argument for nomological impossibility is good enough for me. The 

case I want to make is that in this world (not all the possible worlds where the 

laws of nature are postulated differently), inorganic machines will not become 

conscious. Biological naturalism is, as I would have it, a claim about the world 

as we know it—that consciousness is, and only ever will be, a characteristic 

of some living organisms. Schneider’s and Chalmers’s arguments might still 

stand as reasons to hold on to the conceptual possibility of machine con-

sciousness, but that is not much use to their readers hankering after silicon-

based immortality. Not even the most ambitious of the technophiles would 

invest in a space program for transport to adjacent possible worlds.

9.5  Missing Understanding

Those alone think who do not passively accept the already given.

—Theodor Adorno (2005, 264)

What is thought, such that a machine must lack it? One answer to this ques-

tion is to be found in “The Latest Attack on Metaphysics,” an essay by Max 

Horkheimer published in 1937 that has surprising resonance in our age of 

automated science. That piece was a polemic against logical empiricism,25 

a theory of the nature of scientific knowledge and understanding which, as 

24.  Note that my argument does not rule out the possibility of consciousness in 
hypothetical machines made through synthetic biology—machines that are alive 
and made from organic (metabolizing) substrates.
25.  Discussed by Dahms (1994) and O’Neill and Uebel (2004), although their accounts 
of the dispute are quite partisan toward the logical empiricist side and indicate a lack 
of comprehension of the issues at stake for Horkheimer.
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we saw in section 8.3.3, is exemplified in the programs for automated sci-

ence arising nowadays with the accumulation of supersized data sets and 

machine learning methods for digesting them. I noted before that both logi-

cal empiricists and promotors of automated science were happy to redefine 

scientific understanding as the ability to make accurate predictions on the basis 

of acquired data. I postponed criticisms of this move until this chapter, where 

the background to the discussion is a more general examination of claims 

for mechanized consciousness and general intelligence. Consideration of the 

difference between science as performed by humans and machines will bring 

the notion of understanding into relief and make obvious why it should not 

be devalued or downgraded.

So far in this book, I have gone along with the term “AI,” which encapsu-

lates the thought that certain devices already in existence, while artificial, are 

also intelligent.26 But there is actually still an open question about whether 

such creations are intelligent, properly speaking—whether they are think-

ing things. It is helpful first to review the analysis of automated science put 

forward in section 8.3.3 of chapter  8. The difference between a machine, 

like a deep ANN that can model complex, high-dimensional data sets, and 

a human scientist is that the machine has no ontological posits in addition 

to the data it is fed in order for it to find statistical regularities for the pur-

poses of prediction, generation of samples, and classification. I brought Ernst 

Mach into the discussion there because on his ideal of science, an ontology 

of actual things with essential properties was vestigial and ill placed. The task 

of science, according to Mach—at least according to a caricature that focuses 

on his depiction of science as the project of minimizing mental effort (Patton 

2021)—is to order and represent the data economically, as a means to accu-

rate prediction of new data, with the ultimate aim of instrumental control. 

There is no question of any things beyond or behind the data stream. This 

26.  To preempt my conclusions, I would be happy with the term in the colloquial but 
nonetymological sense of the word “artificial,” as “fake” or “imitation” (e.g., “artificial 
cream”). I assume that this meaning is not operative in the world of AI, where “artifi-
cial” has its etymological meaning of “made through technique” (i.e., human-created). 
Herbert Simon (1969, 4) discusses this same point about the difference between the 
etymological and idiomatic senses of “artificial,” shortly after the baptism of AI. “Arti-
ficial” has too many negative connotations for Simon’s liking because, he says, “our 
language seems to reflect man’s deep distrust of his own products.” How times have 
changed!
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would make the ANN, a statistics powerhouse built to order and generate 

data, the perfect scientific agent.

What’s jarring about this data-adhering mindset is revealed when one 

considers the vulnerability of visual ANNs to adversarial attacks. These occur 

when, for example, a DCNN trained to classify everyday objects is presented 

with photographs with small perturbations (or in some cases, photographs of 

objects with a few specially designed stickers placed on them), which would 

not lead human perceivers to alter their categorization, but rather result in 

dramatic changes in classification for the DCNN. Initial hypotheses about 

adversarial vulnerability assumed that the networks were succumbing to 

some noisiness in their systems (i.e., that the adversarial misclassifications 

were not connected with the learned data structures that enable successful 

classification). However, later work showed, surprisingly, that the features in 

the data that cause the networks to make adversarial misclassifications, are 

also ones relied on in successful cases. As Ilyas et al. (2019) summarize their 

finding, “Adversarial vulnerability is a direct result of our models’ sensitivity 

to well generalizing features in the data.”

To appreciate this point intuitively, examine figure 9.1 from earlier in 

this chapter. It shows how an adversarial image can be generated by taking 

an ordinary photograph of an object and superimposing a very-low-contrast 

texture (the “adversarial noise” pattern) that is diagnostic of another kind 

of object. It was mentioned in section 9.3 that when the typical texture and 

shape cues of different objects are combined in one figure, human perceiv-

ers overwhelmingly make the object identification on the basis of shape, 

whereas a DCNN’s identification will be determined by texture. Texture is 

a “well-generalizing feature” in data sets comprising images of everyday 

objects: when the DCNN under supervised learning comes to associate each 

name label with the texture of those objects when presented in the training 

data, it can reliably use those learned texture-name associations to classify 

objects in images not previously presented in the training set. So the tex-

ture bias of DCNNs accounts for some cases of adversarial vulnerability, and 

it illustrates Ilyas et al.’s general point that adversarial vulnerability is due 

to the DCNN learning features of image data that are actually diagnostic for 

classification but would not be relied upon by a human perceiver.

In their commentary on Ilyas et  al.’s findings, Gilmer and Hendrycks 

(2019) write that the problem of adversarial vulnerability is due to the ten-

dency that an ANN “latches onto superficial statistics in the data.” This is a 
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very telling remark. From the human perspective, we encounter the data as 

being relatable to things, objects that have core properties and surface proper-

ties, essential and inessential features. A furry texture should not be diagnos-

tic for the classification of a cat because a cat can lose its fur and still be a cat; 

the presence of glasses should not determine the identification of a person 

because people take glasses on and off, and this never changes who they are. 

Our thinking is constrained in this way regardless of the statistical regulari-

ties that we have experienced. In my lifetime of accumulated cat data, I have 

never looked at a picture of a shaved cat, and yet if I did, I would still visu-

ally classify it with the furry images whose statistics are so different. But one 

cannot make this distinction between “superficial statistics” and deep ones 

unless one has some informal ontology—a theory of things, processes, and 

their essential versus accidental properties—in the background. And so, from 

the ultraempiricist perspective of the ANN (lacking our informal, essentialist 

ontology), this distinction cannot be made, for data are all that there is, and 

statistics over them may be more or less stable and projectible (and hence 

more or less useful for prediction and classification), but they cannot be more or 

less superficial. The fact that we humans cannot help but think that the data 

features picked out by DCNNs that are nonrobust to adversarial attacks (even 

if predictively useful in the majority of cases) reveal ignorance about what 

something (e.g., a cat or a butterfly) actually is, is some indication that the 

ontology beyond the data, however informal—some notion of beings, with 

essential and inessential properties—is not dispensable for human thought.

It remains to be seen whether adversarial vulnerability presents a serious 

barrier to the rollout of automated science restricted to the instrumental aims 

of prediction and control (Buckner 2020). What it demonstrates is that we 

should not hope for automated science, restricted as it is to making induc-

tions on occurrent data, to deliver anything beyond these aims. Moreover, 

these observations are a springboard for a new characterization of under-

standing, and they help us to account for the significance of the machine’s 

lack of understanding. I contend that the ANN’s restriction to its data stream, 

and the human’s irrepressible tendency to think beyond the data, make the 

difference between the absence and presence of understanding. Understand-

ing is the activity of sense making performed by human beings who cease-

lessly act in among things.

As suggested by the previous discussion of the shape bias, our thinking 

about objects with essential and nonessential properties is a manifestation 
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of the fact that human thought is about our dealings in the world around 

us, and no less than our bodily movements, it is an activity. As asserted 

previously, human visual object recognition is not a module detachable 

from action and conceptualization. We cannot carve off object recognition 

from an understanding of things—a sense of what the objects are, and what 

their presence means—because perceiving, thinking, and moving are inter-

connected for us, and thinking is not the passive ingestion of data, but the 

active, communal production of a network of meanings.27

This opinion on what understanding is, and why twentieth-century empir-

icism has no account of it, is expressed by Horkheimer (1937/2002, 145):

In the eyes of the empiricist, science is no more than a system for the arrangement 

and rearrangement of facts, and it matters not what facts are selected from the 

infinite number that present themselves. He proceeds as if the selection, descrip-

tion, acceptance, and synthesis of facts in this society have neither emphasis nor 

direction. Science is thus treated like a set of containers which are continually 

filled higher and kept in good condition by constant repair. This process, which 

was previously identified with the activity of the understanding, is unconnected 

with any activity which could react on it and thereby invest it with direction and 

meaning.

The point is that the processing of data (“facts”) by itself, and without 

some additional activity of thought, has no path toward meaning, and 

hence understanding. It is a view of broadly Kantian origin, also expressed 

27.  Comparable here is Vallor (2021) on the “sense-making labor of understanding”. 
Another term that could be used here is to say that human thought is “world form-
ing.” Heidegger (1995, part 2) contrasts this with the condition of animals that are 
in his view “world poor” because their behavior is relatively more conditioned by 
environmental triggers. My position is that AIs, lacking understanding and sentience, 
simply do not have a world—are neither “world forming” nor “world poor,” which is 
the condition of inanimate objects. I develop the Heideggerian point elsewhere (Chir-
imuuta in preparation). We may appreciate here a connection between understanding 
and sentience, lost in too many contemporary discussions in which consciousness is 
carved off from cognition and treated as nonfunctional. To be a sentient creature is to 
have a world around you which you are aware of and which is inherently meaningful, 
and this does not happen without some activity of understanding. Recent accounts in 
philosophy of cognition, sensitive to this point, are in Thompson (2007, 228), who fol-
lows Maine de Biran in considering consciousness a, “sentiment de l’existence”; and in 
Ginsburg and Jablonka (2019, 7), who treat consciousness not as a capacity or property 
of a system (like having sight), but as a mode of being.
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in Cassirer’s friendlier, though still critical, discussion of Mach (Cassirer 

1910/1923, 261).28

A central feature of this broadly Kantian view is that it rejects the empiri-

cist notion that knowledge rests on some foundation of pure data, facts that 

are immediately given and unadulterated by any activity of the mind.29 In 

Horkheimer’s version, thought, even when resting on facts, must always be 

in the business of evaluating them, which means that empirical thought, 

as much as it is immersed in the factual, should never aspire to a value-free 

ideal:

In countering experience, the intellect must itself appeal to experience, for its 

concepts are not inborn or inspired. The answer is that it is precisely because 

facts are referred to when other facts are being exposed or abolished, and because 

facts, as it were, are involved in everything on every hand, that constructive 

thought which evaluates facts and discriminates between surface and pith is of 

such supreme importance in every decision. (Horkheimer 1937/2002, 151–152)

The notion explicated in this section, that of understanding being a con-

structive and normative activity, is consistent with the verum factum account 

of scientific understanding depicted in chapter 5 and explicated in section 8.2 

of chapter 8. A genuine cognizer has a role in shaping the data (which are 

not just given on a plate), and with this process of making and interpreting, 

can achieve an understanding. This shaping cannot be extricated from the 

goals and values of the agent. With this in mind, the fundamental disanalogy 

between humans and machines, responsible for the presence and absence of 

understanding, respectively, comes down to the artificial creatures having no 

28.  A nice point of connection here can be found in Rosenblatt’s (1958, 404–405) 
report of the deficit in the “symbolic behaviour” of the perceptron. His reference is to 
the analysis of Kurt Goldstein (1940) on the inability of some patients with brain lesions 
to perform certain kinds of abstractions. As argued in Chirimuuta (2020a), Goldstein’s 
account of abstraction and symbolic behavior is the result of a strong mutual influence 
between the neurologist and his cousin, Ernst Cassirer. Thus, I would conjecture, Rosen-
blatt is making an early report of precisely the lack of spontaneous meaning-making 
that I am diagnosing as the barrier to artificial systems being genuinely intelligent.
29.  As Horkheimer (1937/2002, 158) recounts, “The given is not only expressed by 
speech but fashioned by it; it is mediated in many ways. In accordance with its philo-
sophical presuppositions, Neo-Kantianism has understood the activity which produces 
and organizes the facts to be an intellectual process.” Famously, this is the rejection of 
what Sellars (1956) called the “Myth of the Given.”
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self-propelled activity.30 ANNs, including the most advanced large language 

models (LLMs), are devices that find statistical regularities in enormous, 

high-dimensional data sets that are inscrutable to humans. Such machines 

model data, but they do not shape their own data, nor do they posit any-

thing behind the data, because they lack spontaneity of thought,31 and this 

is, more generally, because they lack self-propelled activity—an ANN is not a 

doer, and it is not the kind of thing that could be because it is not alive (cf. 

Thompson 2007). Only living systems are self-making and self-propelling, 

and as such, can spontaneously weave a nexus of meaning around them-

selves. However, recent models of organic cognition, somewhat transfixed 

by the analogy with ANNs, present a picture of the brain as no more than an 

engine, like an ANN, for prediction (“interpolation”) over massive data sets 

(Hasson, Nastase, and Goldstein 2020).32

From the various opinions of Horkheimer and others, I have assembled 

an account of what understanding is and why machines lack it. That was the 

main purpose of this section. Before closing, however, I would like to dwell 

on an additional point of view to be taken from Horkheimer’s essay, on why 

the prospect of fully automated science should be looked at with concern. A 

theme of his criticism of logical empiricism is that in spite of the progressive 

rhetoric associated with the movement, its recommendations for scientific 

practice would bring about purely conservative results, only strengthening, 

and never destabilizing an exploitative status quo. This line of argument 

is summarized in a tale of a repressive and brutal state in which scientists, 

including social scientists, perfectly conform to the logical empiricist meth-

odology (Horkheimer 1937/2002, 159–160). They are fully content to make 

predictions based on the surface data that they collect about the people of 

30.  The ground-level point about “self-propulsion” is that no artifacts come into 
existence other than through human production. We should not be tempted to 
equate organic reproduction with manufacture of machines. Living beings build 
themselves up in the processes of development in a way that artifacts do not.
31.  The association between thought and spontaneity comes from Kant (Pippin 1987), 
but I am emphasizing, in addition, an association between spontaneity and aliveness.
32.  There is currently a lively discussion of LLMs, such as ChatGPT, and whether they 
can be said to understand the text they produce. See Coelho Mollo and Millière (2023) 
for a helpful overview and positive proposal. Elsewhere, I present the argument that 
understanding (in the sense proposed in this chapter) is lacking in LLMs (Chirimuuta, 
in preparation).
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this nation, and to ignore the inner truths of discontent and injustice. This 

is the scenario that “end or theory” enthusiasts, and even the more impar-

tial observers of big-data science, must at least consider: in the offloading of 

scientific thought to machines, our knowledge (so called) will inherit the 

passivity of machines and can do no more than accept, at face value, what 

is given; moreover, the activity and spontaneity of thought, so disanalogous 

with automated procedures but so essential for the betterment of social, eco-

nomic, and ecological conditions, risk falling out of relevance.

9.6  Conclusions

Like Mach, Whitehead prized the facility of mathematics to disburden the 

mind. He described the expanse of thoughtlessness as a marker of civili-

zational progress, and seemed fairly pleased about it, writing: “It is a pro-

foundly erroneous truism . . . ​that we should cultivate the habit of thinking 

of what we are doing. The precise opposite is the case. Civilization advances 

by extending the number of important operations which we can perform 

without thinking about them” (1911/1948, 41–42, quoted in Vallor 2021).33

Whitehead also said that the fallacy of misplaced concreteness is a source 

of philosophical ruination:

The great characteristic of the mathematical mind is its capacity for dealing with 

abstractions; and for eliciting from them clear-cut demonstrative trains of reason-

ing, entirely satisfactory so long as it is those abstractions which you want to think 

about. The enormous success of the scientific abstractions, yielding on the one 

hand matter with its simple location in space and time, on the other hand mind, 

perceiving, suffering, reasoning, but not interfering, has foisted onto philosophy 

the task of accepting them as the most concrete rendering of fact. Thereby, modern 

philosophy has been ruined. (1925/1967, 55)

I am left wondering if Whitehead ever connected these two points; for 

the fallacy of misplaced concreteness occurs not only because of some 

osmosis of abstractions from the mathematical sciences into philosophy, 

but also because, by education or acculturation, people become content in 

their thought to deal only with the operable versions of complex things, as 

33.  Compare this with Mach (1883/1919, 488), quoted in section 8.3.3 of chapter 8. 
Lindsay (2021, 8–9) gives a paraphrased version of this comment, “The ultimate goal 
of mathematics is to eliminate all need for intelligent thought,” near the start of her 
book on computational models in neuroscience.
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depicted in formal models; and because they are not in the habit of demand-

ing that we think more deeply into things than is possible through quantita-

tive, and ultimately automated, techniques. The depth of thought relevant 

here is orthogonal to deductive and inductive rigor; it comes with a willing-

ness to be bogged down with details, to be concerned about the inner truths 

of situations, as seen in Horkheimer’s tale, even though that process is inef-

ficient and unrewarding in its production of exact and utilizable results; it 

demands an ethical stake.

In this chapter, I have argued that if we see through the fallacy of mis-

placed concreteness and do not settle for the quantified, operable depictions 

of mind and brain that computational neuroscience provides, we can appre-

ciate how and why organic cognition can be so different from its machinic 

imitation. Computation, I have urged, is not the essence of biological intel-

ligence. We are then left with the question of what to say positively about 

the mind. The position of biological naturalism regarding consciousness and 

understanding obviously fits well with the doctrine of embodied cognition, 

as put, for example, by Evan Thompson (2009, 81), that “mind is life-like, 

and life is mind-like.” In fact, this chapter is a modern-dress reenactment of 

an earlier twentieth-century argument for embodied and embedded cogni-

tion on the grounds of a critique of abstraction (Chirimuuta 2020d).

It would seem, therefore, that my final task, in chapter 10, should be to 

outline an agenda for embodied, embedded, noncomputationalist neurosci-

ence. But this is not what I will do. While I believe that the theory of embod-

ied cognition is closer to the truth of how the mind and brain work—that 

there are countless processes in the whole body that are deeply intercon-

nected with the operation of the brain, and hence cognition, and likewise 

that the body is very much entangled with the environmental circumstances 

that our activities respond to—all these interconnections are nevertheless 

more than can be put into a tractable model or workable theory. Embodied, 

ecological approaches fall down, as programs in science rather than philoso-

phies, because they make the inverse of the fallacy of misplaced concrete-

ness: they fail to appreciate how much the task of scientific representation is 

to simplify, rather than to incorporate the truths of things, as far as possible, 

as they stand.

The computational approach modularizes the whole nervous system and 

posits that subsystems within the brain can be understood in isolation from 

the body, and from one another, using highly abstract mathematical models. 
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This provides clarity and precision, which leads to the prestige and success of 

computationalism over embodied paradigms. But it should not be forgotten 

that the abstraction is a departure from the truth—cognition must be very 

different from how it is presented by the simplified models. In the next chap-

ter, I will examine the philosophical problem of the mind-body relationship, 

with the idea in place that the notional separation between brain/mind and 

body is itself a kind of idealization.
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Our calculations would be easy if there were only two bodies colliding, and these 

were perfectly hard, and so isolated from all other bodies that no surrounding 

bodies impeded or augmented their motions. In this case they would obey the 

rules that follow.

—Descartes (1985, 244)

These men will be composed, as we are, of a soul and a body. First I must describe 

the body on its own; then the soul, again on its own; and finally I must show 

how these two natures would have to be joined and united in order to constitute 

men who resemble us.

—Descartes, quoted in Simmons (2011, 54)

10.1  Immortal, Invincible

Dualism is the repressed that always returns. As much as philosophers dis-

avow it, the thought recurs that mind and matter are just fundamentally 

different—two opposite, mutually repelling poles out of all that exists.1 The 

irrepressibility of the thought is suggestive of its having a wider role in a net-

work of ideas, not yet accounted for. Even without the Christian doctrine of 

the immortal soul, and without a scientifically respectable notion of nonma-

terial substance, dualism has persisted in some way or other—as we encoun-

tered it, for example, in the incorruptible, uploadable form of computational 

structure in chapter 9. No less than Descartes did himself, the present-day 

adherent to computational cognition believes that mind can in principle 

detach itself from a living body and have an existence free of it.

1.  Pecere (2020) is a useful comparison of contemporary and historical opinions.

10  Cartesian Idealization
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John Haugeland’s essay “Mind Embodied and Embedded” finds the source 

of the trouble in the conception of the mind as an isolatable subsystem, 

interacting with the body and environment only through limited, prespeci-

fied channels; and his suggested remedy is recognition of the “intimacy of the 

mind’s embodiment and embeddedness in the world,” where the supposed 

opposite poles comingle and are integral to one another (Haugeland 1998b, 

208; emphasis in original). With this I concur. However, in this chapter, I will 

show that more effort is needed to understand why the assumption of mutual 

near-isolation is so tenacious. My argument is that this form of idealization 

is indispensable as a way of simplifying the whole environment-body-mind 

conglomerate into the self-contained modules that are manageable targets 

of scientific research. So even if mind and body are integral to one another, 

a scientific perspective will struggle to see it that way. Consistent with the 

analysis of chapter 9, philosophy need not and should not burden itself with 

the simplifying assumptions of science; but in order for those abstractions to 

be dispensed with, they need to be recognized.

The bulk of what follows will be an examination of the workings of this 

form of simplification, taking Herbert Simon as our representative twentieth-

century Cartesian, showing how the treatment of the human being as a 

hierarchical, decomposable system permits both dualism (section 10.4) and 

radical skepticism (section 10.5). Along the way, I offer suggestions as to the 

conception of mind that ought to follow from the rejection of this tradi-

tion. The conclusion of the chapter, and of this book, will be to vouch for a 

philosophy of mind that pursues its course independently of neuroscience, 

mixed with pessimism about the viability of a scientific program that is truly 

sensitive to the integralness of the mind’s place in nature.

10.2  Fleshing Out Biological Naturalism

In section 9.4 of chapter 9, I defended the position known as “biological nat-

uralism,” which takes the materiality of the brain to be indispensable for con-

sciousness, against the arguments of Chalmers (2014) and Schneider (2019) 

for the in principle possibility of rehousing human consciousness in an inor-

ganic, silicon-based machine. My case rested on the idea introduced back in 

chapter 4, that computation is a useful model for animal cognition precisely 

because it abstracts away from the biological complexities that impede sci-

entific understanding but that most likely make possible consciousness and 
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the other characteristics of general intelligence. As I use the term, biologi-

cal naturalism is a specific claim about the reliance of consciousness on the 

actual material and activities of the nervous system.2 It is not, by itself, a 

theory of the mind-body relationship. However, as we will now see, there 

are implications to be drawn out as to how to conceive of that relationship, 

given the commitment to biological naturalism and the account of simplifi-

cation in neuroscience developed in the course of this book.

Functionalism is the metaphysics of mind in the background of Chalmers’s 

and Schneider’s arguments for “conscious isomorphs.” While it is normally 

taken to be a physicalist or materialist theory—asserting that ordinary physi-

cal matter is all that there is—it retains the dualistic intuition that whatever 

mind may be, it can be conceptualized and examined independently of a 

study of the intrinsic nature of brain and body; that mind is, in principle, 

separable from the material body that possesses it. The positive doctrine is, 

roughly, that an entity has a mind, or specific mental states, by virtue of the 

functional relationships, a pattern of organization, among some of its inter-

nal components, its sensory receptors and motor effectors.3 Just as a com-

puter is what it is not because of the material that comprises it (which could 

be plastic lego, silicon composites, or iron cogs and gears), but by virtue of its 

parts, whatever they are made of, standing in the right kinds of relationships 

to one another, such that the transitions of states of the physical system can 

instantiate the steps of a computation, a cognizant being is said to have its 

2.  This is how Schneider (2019) employs the term, but it is originally comes from 
Searle (1992, 2), who defines it as the wider view that “mental phenomena are caused 
by neurophysiological processes in the brain and are themselves features of the brain.” 
I emphasize that I am not endorsing Searle’s wider commitments, and my sense of 
biological naturalism remains neutral on the question of whether the relationship 
between mental phenomena and neural processes is causal or something else, and 
whether mental phenomena are features of the brain or some extended system, pos-
sibly reaching beyond the central nervous system. Also, I am not in favor of this use 
of “biological” to mean “pertaining to a living system” since it erases the difference 
between a scientific discipline (biology) and its subject matter (living organisms); but 
since this meaning is so widespread, it is practically unavoidable.
3.  I am just giving a general characterization here because there are many subspe-
cies of functionalism. The machine functionalism of Putnam (1975) was most reliant 
on the strict comparison to computers, but it was later abandoned by its founder. In 
my discussion, however, the focus will be on machine functionalism since this is the 
kind of functionalism that underwrites the ideas, criticized in this book, that mental 
states are computational states and that the brain is a biological computer.
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mind because of the structure of the arrangement of its material, not because 

of any particularities of the material itself. This structure is an abstraction 

divorceable from any actual concrete system, and as such, it can be multiply 

realized—embodied in various kinds of material systems. The concrete mate-

rial is inessential to mental activity, which gets compared to the running of 

software.

A thing to appreciate here is that the digital computer is a machine pre-

cisely engineered so that its organizational properties float free of many of 

the specifications of its hardware.4 This fact is spelled out very clearly by 

Simon in his Sciences of the Artificial:

No artifact devised by man is so convenient for this kind of functional description 

as a digital computer. It is truly protean, for almost the only ones of its proper-

ties that are detectable in its behavior (when it is operating properly!) are the 

organizational properties. The speed with which it performs it basic operations 

may allow us to infer a little about its physical components and their natural 

laws; speed data, for example, would allow us to rule out certain kinds of “slow” 

components. For the rest, almost no interesting statement that one can make 

about an operating computer bears any particular relation to the specific nature 

of the hardware. (1969, 18)

The point is that digital computers are unique among devices in that their 

operations (i.e., the tasks they were built to perform) can best be understood 

at a level abstracted away from concrete hardware; and this is because they 

were designed with this aim in mind. The material details of implementation 

have no relevance to most of the questions that pertain to the operation of 

the machine as an executioner of algorithms. In the light of the purposeful-

ness behind the clean separation between hardware and software in such 

machines, it seems a little crazy to think that an organ of the body—which 

is evolved and not designed—would have converged on exactly this degree 

of material indifference. And yet this is the assumption made by the func-

tionalist who believes that in the human being, as much as in the computer, 

“it is the organization of components, and not their physical properties, that 

largely determines behaviour” (Simon 1969, 22), and as such, that the com-

puter is not only a model, but an instantiator of thought.

The presumption that both evolution and artifice have converged on this 

separation of hardware/software levels appears less crazy when related to a 

4.  This is not the case for analog computers (Maley 2021).
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prima facie defensible claim about where to find simplicity in nature. As will 

be discussed in more detail in the next section, the idea is that even a system 

as complex as the human being would be arranged hierarchically in approxi-

mately autonomous levels, such that the comprehension of a higher level, 

like that of cognition, is possible with minimal knowledge of the lower-level 

entities and activities that constitute it.5 This is one way that Simon makes 

the point about autonomy among levels in order to show how an artificial 

system could take on the behavior of a natural one, though sharing none of 

its material basis:

Resemblance in behavior of systems without identity of the inner systems is partic-

ularly feasible if the aspects in which we are interested arise out of the organization 

of the parts, independently of all but a few properties of the individual compo-

nents. Thus for many purposes we may be interested in only such characteristics of 

a material as its tensile and compressive strength. We may be profoundly uncon-

cerned about its chemical properties, or even whether it is wood or iron. (1969, 17)

A crucial thing to notice here is that Simon talks, in the same breath, of 

an order in nature, due to the independence of outer behavior from most of 

the properties of “inner systems,” and the irrelevance to the purposes of the 

modeler of most material details. Indeed, Simon’s book is victim to a long-

running conflation of these, at many points picturing abstractions (which 

are by definition the product of a modeling procedure) as if they are part of 

the furniture of the world.6

There are obvious reasons why we need to attend to the difference between 

irrelevance of some details to a modeler, and irrelevance tout court. No two 

people’s brains have the same number of neurons, and no one neuron in 

my brain would be fully functionally equivalent to a neuron in yours. And 

yet these particularities in neuronal details would be irrelevant to almost 

all modeling projects since a model that did attend to such details would 

be of little use, precisely because it would not generalize. It would take an 

enormous effort to build, with no payoff in inductive generality, and with 

5.  This hypothesis is revisited by Ballard (2015). See Chirimuuta (2022a) for further 
discussion.
6.  The following sentence nicely exemplifies this ambiguity: “This skyhook-skyscraper 
construction of science from the roof down to the yet unconstructed foundations was 
possible because the behavior of the system at each level depended on only a very 
approximate, simplified, abstracted characterization of the system at the level next 
beneath” (Simon 1969, 17).
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predictive utility restricted to the one person that it targets, at a particular 

period in time (given the brain’s changeability). However, those differences 

are certainly not irrelevant to us as people: it matters to me that my ideas, 

decisions, and actions change from one year to the next; I am an individual, 

not identical to you, because of material particularities that are of no import 

to the modeler. The idea that every person’s brain is, in its details, differ

ent from everyone else’s has significance, even if those details will be left 

unregistered by science. Without them, there could be no uniqueness of 

personality and memory. The same observations apply to targets of model-

ing other than the human brain. The question always needs to be raised: 

in whose interests, from what perspective, are we claiming that the details 

don’t matter?

We therefore recognize that functionalism is committed to a certain 

idea about how to simplify the brain via the independence of functional 

organization from material realization. Wary of committing the fallacy of 

misplaced concreteness, I decline to project onto the fabric of the world a 

convenient simplification that could at best hold only approximately. The 

rejection of functionalism, as well as the assertion that for the actualization 

of human and animal cognition in all its richness (as opposed to a crude and 

partial imitation), the material details probably do matter, lead me into the 

territory of biological naturalism. Biological naturalism denies the functional-

ist tenet of multiple realizability, the notion that there could be minds instan-

tiated in radically different, inorganic substrates. A positive view remains to 

be stated.

The regular dialectical opponent of functionalism is the mind-brain iden-

tity theory—the view that the mind just is the brain since descriptions of 

mental states and processes are reducible to descriptions of neural ones.7 

Although the identity theory is a species of biological naturalism, I reject it 

along with functionalism, for it also involves the dubious ossification of a 

scientific simplifying strategy. Reductionism was the mode of simplification 

under scrutiny back in chapter 3. Its bet is on there being stable, elementary 

components of the system that do not interact in complicated ways, such 

that knowledge obtained about the parts is foundational to explaining the 

7.  An early statement is from Smart (1959), and a more recent defense is by Polger 
(2006).
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behavior and properties of the whole.8 We saw in chapter 3 that the reduc-

tionist methodology, with its obvious departure from the observable facts 

concerning the context dependency of activity in the nervous system, under 

normal ecological conditions, is justifiable only on instrumentalist grounds. 

A perspective so narrowly justified is not a viable basis for a philosophical the-

ory of mind and body. And yet this narrowness infects philosophical accounts 

that subscribe to reductionism, with their spurious claims that pain could be 

C-fibers twitching, or depression a chemical imbalance. Reductionists are in 

denial about what these so apparently are; namely, complex, multifaceted, 

neural, psychological, and social conditions.

One way to characterize the trajectory of theoretical neuroscience in the 

twentieth century, from reflexology to computationalism, is as a growth in 

the sophistication of its simplifying strategies, from an implausible reduc-

tionism to a computationalism granting that there is a certain kind of 

“organised complexity” (Simon 1969, 86n4) in the brain and nervous sys-

tem. But as has been argued since chapter 4, the kind of complexity com-

patible with the computational framework will still leave too much of the 

mind-brain system unaccounted for. Thus, the version of biological natural-

ism I endorse is one that does not rest on the simplifications of reductionism 

or functionalism. I will refer to it as embodied mind,9 and I will return to it 

toward the end of the chapter, following an argument that the functional-

ist’s favored simplifications lend themselves to dualist and skeptical results.

One last point before moving on is to say that a lesson of my approach 

is that it is a mistake to equate multiple realization (substrate independence 

of function) with degeneracy and structural variation in organic systems. 

8.  This reductionism makes the central nervous system a simple system, in Simon’s 
terms. Churchland (1994) outlines a sophisticated reductionist methodology for 
neurobiology that allows for some top-down investigation.
9.  For brevity, I’m labeling the view as embodied mind rather than embodied and embed-
ded mind. As will become clear in section 10.5, it is just as important to reject the 
assumption of near-independence of mind or brain from environment (asserting embed-
dedness) as it is to assert embodiment, rejecting the assumption of near-independence 
of mind or brain from the body. See Ward and Stapleton (2012) for the argument that 
the embodied, embedded, and enactive views of cognition are mutually supportive. 
While I do not discuss action and cognition in this chapter, my view is consistent 
with the enactivist idea that these two are fundamentally linked. This is discussed in 
the account of understanding presented in the previous chapter, in section 9.5.
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Across and within living species, we continually encounter variations on a 

theme, where virtually identical functions are carried out by notably differ

ent structures and processes. Within the organism, including the nervous 

system, degeneracy—the maintenance of vital functions in spite of turn-

over of components and recalibration of processes—has been commonly 

observed and thought to be ubiquitous in evolved systems (Edelman and 

Gally 2001). That something persists, across the flux, is a general charac-

teristic of living organisms (Dupré and Nicholson 2018). The combina-

tion of functional stability and material plasticity is omnipresent in the 

living world. But this gives no grounds to say that function can float free 

of material realization, and that it is transferable into inorganic material, 

as the thesis of multiple realizability would have it. It does mean, how-

ever, that the theorist of embodied mind need not be worried by the obser-

vations that were problematic for the identity theory (e.g., that it seems 

right to say that an octopus could feel pain even without having any of the 

C-fibers of mammals). These phenomena of variation and degeneracy jus-

tify attention—where explanatory context permits—to some coarser-grain 

stabilities encompassing a range of more or less subtly different tokens. 

Moreover, the phenomenon of convergent evolution may justify attribu-

tion of same or similar functions to neural structures in phylogenetically 

distant animals like humans and octopuses (Godfrey-Smith 2016b). This 

means that fine-grained details, varying from one individual to another 

and throughout the lifetime of an individual, need not always be privileged 

according to the theoretical agenda of embodied mind; it is just that they 

should not be excluded from consideration at the outset, as the functional-

ist would prefer. It may well be that these coarse-grained stabilities provide 

a foothold for some kinds of simplifications, but it will not be the radical 

form of abstraction that Simon argues for, and to which we now turn.

10.3  The Assumption of Near-Decomposability

I am following Haugeland in his characterization of the theory of embodied 

and embedded cognition as the rejection of the idea that a certain kind of sim-

plicity is to be found in the brain and nervous system—that the mind itself is, 

and is part of, a near-decomposable system made of semi-independent com-

ponents whose pattern of organization is responsible for the sophisticated 

behavior of the system. To better understand the contrast between embodied 
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mind and the tradition it breaks from, I will now discuss the assumption of 

near-decomposability in more detail.

The first thing to appreciate is that the assumption of near-decomposability 

is a path to scientific understanding. As Haugeland writes: “Finding, in some-

thing complicated and hard to understand, a set of simple reliable interfaces, 

dividing it into relatively independent components, is a way of rendering it 

intelligible” (1998b, 216). For example, if you take an organism and see no 

more than an undifferentiated whole, you have little hope of accounting for 

the ways that it is sensitive to its environment, how its behavior is gener-

ated, and how self-maintenance occurs. In contrast, appreciating that its 

structure is differentiated into organs, and positing that these are somewhat 

independent, licenses more focused investigation of those components and 

the possibility of grasping the principles of their joint operation (Bechtel 

and Richardson 2010). To borrow Haugeland’s own example, a television 

set would be unintelligible if cut up into 1-centimeter cubes. But breaking it 

down systematically into likely component parts creates a chance of under-

standing how it works.

In a near-decomposable system, components are defined by “intensity 

of interaction” (Simon 1969, 90). A component is a part of a system, such 

that the number of interactions within the part is an order of magnitude 

higher than the number of interactions that a part has with others in the 

system (Simon 1969, 99).10 This is why we are to think of components as 

semi-independent from one another. Embodied mind is the denial of the 

thesis that the mind, brain, and rest of the body are components in this 

sense. It denies the quasi-independence of the mind from both lower-level 

subcomponents and the systemwide context in which it is embedded.

One way to think about Simon’s notion of a component is to say that from 

the perspective of the wider system, each component is a black box. As such, 

its place in the system is clearly defined in terms of its function, the inputs 

it can receive and the outputs it will generate, but its inner workings—the 

procedure by which this input-output relationship is maintained—do not 

10.  This allows Simon then to sum up his approach in two propositions: “(a) In a 
nearly decomposable system the short-run behavior of each of the component sub-
systems is approximately independent of the short-run behavior of the other com-
ponents; (b) in the long run the behavior of any one of the components depends in 
only an aggregate way on the behavior of the other components” (1969, 100).
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matter. This affords the investigator of the system a handy simplification. In 

order to understand the operating principles of the system, she need only 

characterize the function of each component, deferring the specification 

of their inner mechanisms. Moreover, there is a layered picture of “boxes-

within-boxes,” such that components have subcomponents, but likewise 

the details of those submechanisms can be black-boxed, allowing the same 

abstraction to occur at the various levels of the system. This is how Simon 

describes the situation:

The basic idea is that the several components in any complex system will perform 

particular sub functions that contribute to the overall function. Just as the “inner 

environment” of the whole system may be defined by describing its functions, 

without detailed specification of its mechanisms, so the “inner environment” of 

each of the subsystems may be defined by describing the functions of that subsys-

tem, without detailed specification of its submechanisms. (1969, 73)

It is important here to note the connection to the computer, which as 

we saw previously conforms more closely than anything else to the ideal 

of a system in which only functions, not mechanistic or implementational 

details, are relevant to its behavior (Simon 1969, 18). But to reiterate the 

point from section 10.2, it would seem outlandish to presume that a brain 

could be like a computer in this respect.

In the course of the well-known essay on the “Architecture of Complex-

ity,” Simon offers an evolutionary argument as to why we might nonethe-

less expect this. It is an argument based on an analogy with the process 

of watchmaking: it would be near impossible to make a watch by hand if, 

each time the phone rang and the work were interrupted, all the pieces 

assembled up to that point fell apart in a heap—far better to have a process 

of manufacture in which stable subassemblies are made separately, then 

pieced together to form more complex systems. Since, as Simon argues, the 

same requirement of there being stable subassemblies would apply to the 

evolution of organisms, one should expect to find, in nature, hierarchical 

complex systems made up of stable, semi-independent components and 

subcomponents (Simon 1969, 90–94). A problem with this argument is that 

even if granted the point that evolution must involve the “assembly” of 

more complex organisms out of simpler, but still stable and viable ones 

(as in the major evolutionary transition from unicellular to multicellular 

life forms), this does not mean that stable subassemblies must have the 

characteristics outlined in Simon’s definition of a component. In particular, 
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there need not be a low intensity of interaction beyond the confines of 

the evolved subassembly, and it may well not be the case that the sub-

assembly can be characterized functionally, without reference to material 

details. These putative properties of subassemblies are, of course, valuable 

to a human being, such as a watch-maker, who makes things from mate-

rial components. It is undesirable for any component subassembly to have 

many modes of interaction with its context or to be too sensitive to fine 

grained material conditions, as this will increase the chance that it will 

depart, in unforeseeable ways, from the behavior required by the design.

In chapter 8, we encountered Descartes among the early scientists whose 

explanatory program presupposed the denial of any fundamental differ-

ence between natural and artifactual objects. This is a simplifying assump-

tion because machines and other technological entities are less complex 

than organisms, but they afford a model, a simplifying lens through which 

to view the works of nature. We can call this a “Cartesian idealization” 

and recognize that Simon is employing it both in his evolutionary argu-

ment, which takes natural selection to fall under the same constraints as 

the human process of design, and his promotion of the computer as the 

model for the mind, with its characterization of functional systems float-

ing free of material concerns. In the epigraph to this chapter, we see that 

the convenience of positing isolated systems is already noted by Descartes. 

Simon’s positing of almost-independent components is a species of this 

sort of Cartesian idealization.11 Cartesian dualism is the notorious view that 

mental substance (res cogitans) is radically different from physical substance 

(res extensa).12 If we bracket the ontological commitments of Descartes’s 

11.  I do not mean to suggest that Descartes holds the copyright on these idealizations. 
Rather, they are characteristic of a tradition of physical science that has in turn shaped 
the course of cognitive science and neuroscience more recently. Indeed, mind-body 
dualism, of some sort, is much older than Descartes. My deployment of the term “Car-
tesian” is self consciously polemical, and as with all such polemics, it risks making a 
caricature of the historical figure (Roux 2013). I emphasize that in talking of “Cartesian 
idealization,” I am not claiming that Descartes was the inventor or propagator of these 
idealizations. Importantly, the assumption of the self-containment of mind, which I 
call “Cartesian” for the purposes of this discussion, is probably not consistent with the 
notion of “intermingling” between mind and body in human beings, which Descartes 
invokes but does not properly theorize (Simmons 2011).
12.  Descartes’s own views on the mind-body relationship are more complicated than 
the standard reading, focused on the Meditations, allows. From other texts such as 
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own dualism, we see that the more tenacious dualist idea stems from the 

idealization of isolation, as Haugeland (1998b, 207) rightly puts it, of cog-

nitions as “self-standing and determinate on their own, without essential 

regard to other entities.” To treat the mind in this way, as conceptually 

separate from the brain, and the brain as separate from the body is to treat 

a person as a near-decomposable system

Before moving onto a closer examination of dualism, we should here 

acknowledge that Simon does at least float the idea that complex natural sys-

tems appear to be near-decomposable because that is the way that humans 

can understand them. I quote this important passage at length:

The fact then that many complex systems have a nearly decomposable, hierarchic 

structure is a major facilitating factor enabling us to understand, describe, and 

even “see” such systems and their parts. Or perhaps the proposition should be put 

the other way round. If there are important systems in the world that are complex 

without being hierarchic, they may to a considerable extent escape our observa-

tion and understanding. Analysis of their behavior would involve such detailed 

knowledge and calculation of the interactions of their elementary parts that it 

would be beyond our capacities of memory or computation.

I shall not try to settle which is chicken and which is egg: whether we are able 

to understand the world because it is hierarchic or whether it appears hierarchic 

because those aspects of it which are not elude our understanding and observa-

tion. I have already given some reasons for supposing that the former is at least 

half the truth that evolving complexity would tend to be hierarchic but it may 

not be the whole truth. (Simon 1969, 108)

One thing to point out is that a possibility not considered by Simon here 

is the one frequently argued for in this book: that simplicity (e.g., in this 

case, near-decomposability) is not merely found, and intractable complexity 

ignored, but that simplicity, instead of being discovered, is projected, massaged, 

or in some way elicited from the world. Many systems can be assumed to be, 

to some degree of approximation, near-decomposable. In addition, experi-

mental methods can suppress the channels of interactions among parts of 

systems, making them better conform to Simon’s definition of a compo-

nent. What must be remembered is that the success of scientific work that 

Traité de l’homme, it is possible to recover an “embodied Descartes,” in which the body 
by itself is endowed with flexibility and intelligence. But this does not disrupt the core 
point at issue in this chapter, which is that “Descartes does take the mind and the 
body to be radically distinct—and to be fully separable, at least in principle” (Hutchins, 
Eriksen, and Wolfe 2016, 301). See also Simmons (2011).
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represents systems as near-decomposable should not be taken as evidence 

that this is simply how things are.

10.4  Dualism

Historically the modern theory of transformational linguistics and the information-

processing theory of cognition were born in the same matrix of ideas produced 

by the development of the modern digital computer, and in the realization that, 

though the computer was embodied in hardware, its soul was a program.

—Herbert Simon (1969, 47)

Various contemporary philosophers, and even neuroscientists such as Anto-

nio Damasio, have cast Descartes as the originator of a pernicious idea about 

the radical difference between mind and body—an idea that has weedlike 

tenacity, which many have attempted to dig out once and for all, but which 

always seems to grow back from the fragments left in the soil. Gregory McCull-

loch (1995) is one philosopher who, in his own effort to root out dualism, 

pinpoints the modern manifestation as resting in the notion that minds are 

“self contained.”13 It is easy to buy into a picture of Descartes bequeathing 

a conception of the mind to future generations, a poisoned inheritance that 

has persisted long past substance dualism, morphing into different versions, 

and because it is somewhat changed, it goes undetected and is almost irresist-

ible. The problem with this diagnosis of dualistic thinking as the result of an 

individual philosopher’s influence is that it fails to consider that there may 

be broader and still active causes of its appeal. What is left unconsidered is 

the possibility that dualism is symptomatic of the wider tendencies of the 

scientific culture that Descartes, among others, represents, and it persists not 

because of the long shadow of one philosopher, but because the essentials of 

this intellectual culture remain.

That the supposed “self containment” of the mind is the idea most signifi-

cant to philosophy and science today is, of course, consistent with the analy

sis put forward by Haugeland (1998b), and endorsed in this chapter. The 

treatment of mind and body as different components of a near-decomposable 

13.  “The idea that minds are more or less self contained with respect to their material 
surroundings continues to exert a powerful influence in contemporary philosophy, 
psychology, cognitive science and artificial intelligence design” (McCullough 1995, 
16–17).
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system is one instance of this idea. The key assumption is that there is rela-

tively little interaction between these two components—the interface between 

them is “narrow-bandwidth” (Haugeland 1998b, 220)—such that the mind 

can be characterized in terms of its rich internal organization (within compo-

nent interactions), plus the small number of interactions it has with the com-

ponents outside it via its input and output channels. The coupling between 

soul and body at the pineal gland suggests a narrow bandwidth interface; 

but even the contemporary image of the brain in a vat runs on the assump-

tion that the brain (now taking the place of the mind) is hooked up to the 

rest of the world via a relatively small number of nerve fibers, so that the 

input and output communications typical of an embodied brain could be 

re-created artificially. Thus we see that the treatment of a human being as a 

near-decomposable system grounds the conception of the mind (or brain) as 

a separable component, which is one way to express the dualist commitment 

to the self-containment of the mind.

The additional contribution of my analysis is the point that the demand 

of science to make complex systems intelligible by imposing simplifying 

assumptions will create a pressure toward treating human beings, and other 

creatures, as if near-decomposable systems, with self contained minds, 

even when they are not. Whereas Haugeland (1998b, 228–229) treats it as 

a straightforward matter of empirical discovery that a picture of the inte-

gralness of brain and body will be favored once there is a weight of neu-

roanatomical evidence in support of the view that the interface between 

them is extremely “high-bandwidth,” my thought is that even given these 

well-known facts, the pressure remains for scientists to idealize away from 

them, retaining the picture of cleanly separable systems and subsystems. 

The richness and breadth of the interconnections between the nervous 

system and all the other bodily systems—immune, endocrine, digestive, 

muscular, skeletal—are more than can be encompassed from any one mod-

eling perspective that aims at a minimum of clarity and precision. Thus the 

tendency toward a form of dualism will remain.

The choice of Herbert Simon as the representative scientist is convenient 

because in his writings, the connection between dualism, functionalism, 

and techniques of abstraction is present in a uniquely salient way. The fol-

lowing passage exemplifies the way that functionalism turns out to be a 

version of dualism:
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I have discussed the organization of the mind without saying anything about the 

structure of the brain.

The main reason for this disembodiment of mind is of course the thesis that 

I have just been discussing. The difference between the hardware of a computer 

and the “hardware” of the brain has not prevented computers from simulating a 

wide spectrum of kinds of human thinking just because both computer and brain, 

when engaged in thought, are adaptive systems, seeking to mold themselves to 

the shape of the task environment. (Simon 1969, 54)

In this passage, the simplification at work is the assumption that comput-

ers and brains are adaptive systems, and as such, their behavior is explainable 

by reference to the externally imposed constraints to which they must con-

form.14 This assumption permits factors such as material constitution and pro

cesses in the body to be excluded from consideration, which is a convenient 

way to reduce the number of variables to be studied, and of course also justi-

fies the use of the relatively simple computer as a model for the brain.

However, it might be objected that the legacy theory closest to function-

alism is not dualism but hylomorphism.15 The identification of Aristotle’s 

hylomorphism as the precursor to functionalism is made at the start of vari

ous introductory texts (e.g., Block 1980) and was promoted by Hilary Put-

nam, one of the early proponents of functionalism; it has generated its own 

controversy among scholars of Aristotle (Rorty and Nussbaum 1992). While 

I grant that the characterization of mind as form, or organization, is shared 

between functionalism and hylomorphism, that does not detract from the 

point crucial to my discussion: to wit, in functionalism, the intrinsic fea-

tures of the body are inessential to what the mind is, as opposed to the 

functional roles of constituent parts of the body. For the functionalist, any 

system made from components duplicating those functional roles could 

have a mind, such that in principle, mind is possible without embodiment 

and mental life has nothing inherently to do with being alive.

14.  Pace Haugeland (1998b, 210), I do not take Simon to be saying that humans are 
so different from ants in that, as apparent in the quotation here, our complexity 
is also said to be driven by external factors. This is the “environmental complex-
ity thesis” described by Godfrey-Smith (1996), and comparable to the hypothesis of 
adaptationism in evolutionary biology.
15.  Briefly, hylomorphism uses form as the basic ontological and explanatory princi
ple in the philosophy of mind. Jaworski (2016) is a recent proponent.
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As Burnyeat writes, “The whole point of functionalism is to free our 

mental life from dependence on any particular material set-up” (1992, 17; 

emphasis in original). But, he argues, it is a mistake to take Aristotle’s form-

matter distinction as lending itself to this kind of independence, where 

mind is the form and brain is the matter; rather, hylomorphism asserts an 

interdependence of form and matter, or as Burnyeat puts it, the assertion is 

that the forms essential to organisms are not contingently related to matter:

Life and perceptual awareness are not something contingently added to animal bod-

ies in the way in which shape is contingently added to the bronze to make a statue. 

Aristotle states explicitly in [De Anima] 2.i that the only bodies which are potentially 

alive are those that are actually alive. A dead animal is an animal in name alone. 

And this homonymy principle is no mere linguistic ruling. It is a physical thesis to 

the effect that the flesh, bones, organs, etc. of which we are composed are essentially 

alive, essentially capable of awareness. (1992, 26; emphasis in original)16

It is also interesting that Burnyeat identifies the artifact analogies used 

by Aristotle to illustrate hylomorphism (such as the bronze statue) as hav-

ing the misleading connotation that form and matter may only be contin-

gently related in living beings, arguing that this analogy should not be read 

into De Anima.17 It is the denial of the interdependence of mind and body 

that is the crucial commonality between functionalism and dualism, and 

the construal of the artifact as a model for the living organism was noted 

by me already as one of the relevant Cartesian idealizations. Nussbaum and 

Putnam (1992, 33), in their response to Burnyeat, uphold the contingency 

of matter-form relationships and argue that “plasticity”—the many-to-one 

relationship between structure and function—in living organisms speaks 

to the appropriateness of this assertion when theorizing mind and brain. 

But as argued previously, it is a mistake to equate these phenomena of plas-

ticity, degeneracy, and convergent evolution with the much more radical 

independence of multiple realizability maintained by functionalists.

It is worth pausing to note the underlying interconnection between our 

two Cartesian idealizations. The assertion that an artifact could be a per-

fect model for an organ or organism (i.e., one not suffering from glaring 

16.  See Whiting (1992, 85–88) for a related discussion.
17.  “There are in any case strong independent grounds for rejecting, where proper 
substances [e.g., organisms] are concerned, the artefact model and the idea of a merely 
contingent relation between matter and form” (Burnyeat 1992, 26).
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and misleading disanalogies) is a commitment to the idea that an organ 

like the brain could operate, in its essentials, in the same way as a machine 

like a computer does. Descartes is well known for arguing in his Treatise on 

Man that a living body could operate, in its essentials, in the same way as a 

machine because bodies are mechanisms. Independently of the question of 

whether Descartes was historically the most important propagator of this 

idea, it is true that this is now a prevalent, if not dominant, conception of 

the body and its systems. But what does it mean to say that the body is a 

suite of mechanisms? Among the many characterizations of mechanism in 

the literature, one feature is particularly significant to our study. It is that 

mechanisms are assemblages of parts that are in principle separable from 

one another. The components of mechanisms are partes extra partes—things 

all sitting externally to one another with no inherent connection among 

them.18 They interact in limited, clearly specifiable ways, being components 

in Simon’s sense. Indeed, the parts of artificial mechanisms must be that way, 

or else they could not be assembled. So the notion of this isolated form of 

existence—of entities that are not inherently dependent on or constituted by 

what is beyond their outer boundaries, even if, as a matter of empirical fact, 

they always occur within particular contexts—can be found at the root of the 

idea of mechanism, of decomposable systems, and hence of the Cartesian 

mind, with the mind not inherently dependent on the body. The assump-

tion of isolated existences is a prerequisite for the kind of conceptual clar-

ity demanded in scientific thought. If the assumption is not employed, the 

boundaries around objects of study remain vague and indeterminate, and 

we are beginning to deal with a worldview in which resonance and mutual 

influence replace workable relationships of demarcated cause and effect, 

and where relationality has precedence over entities related. The mindset of 

dualism, which is the mindset of the so-called mechanistic worldview, is the 

rejection of this outlook.19

18.  See Guttinger (2018, 306), reporting on the ideas of biologists Birch and Cobb:

In a mechanical system. . . . ​the nature of an entity is not affected by the relations it has with 
other things or processes. The cogwheel or the steel rod are not affected in their nature by their 
(external) relations or by the change (turning, expanding, contracting) they undergo. The way 
they react to changes in their context is set by their material constitution. In an ecological 
system, what a thing is depends on the relations it has (emphasis added).

19.  The contrast between these two worldviews is the theme that runs through Hesse’s 
Forces and Fields. Action at a distance was associated with obscure modes of influence, 

Downloaded from http://direct.mit.edu/books/book-pdf/2345162/book_9780262378628.pdf by guest on 25 March 2024



294	 Chapter 10

There are some philosophical precursors to the diagnosis of dualism as 

being fostered by the scientific preference for dealing with neatly separated 

systems. In the late nineteenth century, mind-body parallelism was a dualist 

theory popular among scientists, including the neurologist Hughlings Jack-

son (Chirimuuta 2017b). The idea was that mental states ran along a parallel 

track in synchrony or “concomitance” with the series of states of the nervous 

system, but without mutual influence. William James was scathing about 

concomitance, which he called an “utterly irrational notion” (1890/1950, 

136). Name-calling aside, James makes the helpful suggestion that this view, 

which requires commitment to the unlikely scenario of “absolute separate-

ness” together with perfect correspondence of mental and neural states, gains 

its appeal because it offers to scientists conceptual neatness and the chance to 

exclude hazy mental factors from their investigations:

The desire on the part of men educated in laboratories not to have their physical 

reasonings mixed up with such incommensurable factors as feelings is certainly 

very strong. I have heard a most intelligent biologist say: “It is high time for 

scientific men to protest against the recognition of any such thing as conscious-

ness in a scientific investigation.” In a word, feeling constitutes the “unscientific” 

half of existence, and anyone who enjoys calling himself a “scientist” will be too 

happy to purchase an untrammelled homogeneity of terms in the studies of his 

predilection, at the slight cost of admitting a dualism which, in the same breath 

that it allows to mind an independent status of being, banishes it to a limbo of 

causal inertness, from whence no intrusion or interruption on its part need ever 

be feared. (James 1890/1950, 134–135)

I should also mention that in his presentation of the fallacy of mis-

placed concreteness, Whitehead (1925/1967) argues that the demand for 

mathematical precision in physical science makes fertile ground for dual-

ism because the quick way to deal with all that is qualitative, and as such, 

refractory to precise definition, is to exclude it from matter and impose it 

on mind.

whereas the restriction to action-by-contact came with a conception of material bodies 
as impassive, bounded entities only able to be affected by immediate impulse. As she 
notes:

The preference for action-by-contact theories in physics was historically connected with the 
objectification and depersonalisation of nature and the desire to eliminate from explana-
tions of it the “psychological” analogies of organism, command, and attraction in favour of 
the analogy of mechanism, and it was a fact that most familiar mechanical devices acted by 
contact. (Hesse 1962, 291)
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In Cassirer’s Philosophy of Symbolic Forms, there is a variant of this 

account, which I will revisit at the end of this chapter. It is not science per 

se, but the tradition of metaphysical inquiry from which science emerged, 

that fosters dualism. According to Cassirer, it is the conceptual clarity and 

determinateness demanded by metaphysical theorizing that generate the 

mind-body problem out of what, phenomenologically, presents itself in 

untutored experience as the basic unity of mind and body:

The body-soul relationship proves ever and again elusive, regardless of whether 

thought seeks to catch it in the meshes of an empirical causality or of a purely 

intelligible determination. For every kind of determination makes body and soul 

appear as two independent, self-subsistent entities, one of which is conditioned 

and determined by the other: and the peculiar mode of “in-volvement,” of mutual 

interwovenness disclosed by the body-soul relationship, never ceases to resist this 

form of determination. (Cassirer 1929/1957, 99)

Cassirer observes that Aristotle is not as far down this path of separa-

tion as later metaphysicians since for him, “the soul is still the entelechy 

of the body and thus its most proper ‘reality’ ” (1957, 103). We might add 

to this remark that hylomorphism is exemplary of the way that Aristotle’s 

philosophy is a product of the twin demands of systematic theorizing and 

faithfulness to what is available in sensory experience.

With my favored analysis in place, we can end this section with a deeper 

understanding of the ways in which contemporary, materialist philoso-

phies of mind are dualistic. Searle rightly finds fault with materialist theories, 

such as functionalism, for their acceptance of the Cartesian categories of 

the mental versus the physical:

The weird feature about this entire discussion is that materialism inherits the worst 

assumption of dualism. In denying the dualist’s claim that there are two kinds of 

substances in the world or in denying the property dualist’s claim that there are 

two kinds of properties in the world, materialism inadvertently accepts the cat-

egories and the vocabulary of dualism. It accepts the terms in which Descartes set 

the debate. It accepts, in short, the idea that the vocabulary of the mental and the 

physical, of material and immaterial, of mind and body, is perfectly adequate as it 

stands. (1992, 54)

However, this does not account for why the terms of the debate remain 

so intuitive and appealing, other than with the hint that Descartes arranged 

things that way, and no one has bothered to give them an overhaul in the 

meantime. The more plausible explanation is that dualism has something 
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else to offer, and for this reason it has been reinvented many times. Yet, if 

the division of substances and properties into two schedules under a mental 

and physical heading is itself a convenient way to clarify terms and simplify 

the subject matter of science, perhaps it is not so dispensable after all. We 

will return to this issue in section 10.6, after a short examination of skepti-

cism and disjunctivism.

10.5  Skepticism

The habit of thought underlying dualism takes the world to be made up of 

items not inherently related to one other, which are more or less, in princi

ple, isolatable. These separate entities are linked to one another by cause and 

effect, but not by the deeper bond of constitution. The mind as separate from 

the body, and the body as separate from the world, are just two instances of 

a more generalized picture. However, the separateness of mind from every

thing else is marked out from other cases in its generating a unique set of 

philosophical concerns. We have already examined dualism, which creates 

the puzzle of how mind and body could be so tightly synchronized with 

one another if so radically different. Skepticism shows even more clearly 

how a problem arises with the assumption of isolatability and how it can 

be resolved by removing that assumption. The Cartesian skeptical predica-

ment is of a mind absolutely isolated but deceived into thinking that it per-

ceives an external world by the manipulations of an evil demon, or—in the 

updated version of the thought experiment—a mad neuroscientist tweaking 

the nerve impulses sent into a brain in a vat. Once, conceptually, the mind is 

cut off from the rest of existence, it can in principle only have certain knowl-

edge of its own contents—that it is experiencing a sensory perception, but 

not that there is anything in the world beyond the confines of the mind that 

the experience is a perception of.

That the Cartesian predicament is more general than an epistemological 

puzzle has been appreciated elsewhere. At the start of Mind and World, John 

McDowell writes of “an inchoately felt threat that a way of thinking we 

find ourselves falling into leaves minds simply out of touch with the rest of 

reality, not just questionably capable of getting to know about it. A problem 

about crediting ourselves with knowledge is one shape, and not the most 

fundamental, in which that anxiety can make itself felt” (1996, xiii–xiv).
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We will now see how disjunctivism, one strand of McDowell’s response to 

the worry about the failure of the mind to make contact with the world, is in 

essence a denial of the assumption of isolatability, for disjunctivism asserts 

that in the good cases, where perception affords knowledge of things in the 

world around me, those things do not merely cause but also constitute my 

mental state. We will see that McDowell’s case for disjunctivism converges 

on the central points of this chapter. However, disjunctivism has faced con-

demnation from Tyler Burge for alleged incompatibility with perceptual 

science. I will argue that the incompatibility is not the one that Burge takes 

it to be, and that there are indeed good reasons for philosophy to pursue 

inquiries detached from the conceptual frameworks of the sciences.

10.5.1  Disjunctivism

Disjunctivism is a theory in the philosophy of perception that states that 

where you have a veridical perceptual state (e.g., of seeing a purple balloon 

drift past your window) that has an illusory or hallucinatory counterpart 

indistinguishable to the subject, even though the veridical and nonveridi-

cal states are subjectively indiscriminable, it is not the case that they have 

the same epistemic significance (McDowell 2013, 259–260, 263). Disjunctiv-

ism is most often presented as a solution to the problem posed by illusions 

and hallucinations to the naive realist theory whereby veridical perceptual 

states involve a relation of acquaintance with the external object of per-

ception (Soteriou 2020; Crane and French 2021). For this reason, it is not 

always made obvious that disjunctivism, at least on McDowell’s account, is 

in essence a response to Cartesian skepticism.20

However, the connection between self-containment and skepticism and 

the rejection of these afforded by disjunctivism is quite clear in McDowell’s 

presentation. The idea at fault, according to McDowell (1998, 242) is of a 

“self-contained subjective realm, in which things are as they are indepen

dently of external reality.” In such a view, the mind just seems to make no 

contact with the external world. McDowell uses various locutions to describe 

the account that he opposes: it is of “the inner realm autonomous” in which 

20.  I am only considering McDowell’s version of disjunctivism. See Byrne and Logue 
(2009), Haddock and MacPherson (2011), and Soteriou (2016) for surveys of the 
topic.
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“we deny interpenetration between inner and outer” (1998, 245); it is “a 

conception of a realm whose layout is independent of external reality” (1998, 

257). With this isolation of the mind, the idea that perception could give 

it access to things around it becomes doubtful, and hence radical skeptical 

scenarios rise up as coherent possibilities. Most of the recent post-Cartesian 

epistemologies accept the fallibility of perceptual knowledge and neglect the 

root issue.21

McDowell concurs with the view defended in this chapter—namely, that 

what is most fundamentally problematic about the Cartesian frame in phi-

losophy of mind is its positing of the self containment of mind, not its 

ontology of mental substance—and McDowell also sees this as a fault within 

functionalism even though it is a materialist theory (1998, 246). Moreover, 

he pinpoints the demands of scientific causal explanation as giving the ini-

tial impetus for the Cartesian separation of the mental as a self standing 

explanandum:

It seems scarcely more than common sense that a science of the way organisms 

relate to their environment should look for states of the organisms whose intrin-

sic nature can be described independently of the environment; this would allow 

explanations of the presence of such states in terms of the environment’s impact, 

and explanations of interventions in the environment in terms of the causal influ-

ence of such states, to fit into a kind of explanation whose enormous power to 

make the world intelligible was becoming clear with the rise of modern science, 

and is even clearer to us than it would have been to Descartes. (McDowell 1998, 

243–244)

Functionalism reinhabits the same explanatory framework, identifying the 

“autonomous explanatory states” with organizational states of the nervous 

system. Again, the point is not that functionalism is directly influenced by 

21.  The anti-Cartesian agenda behind disjunctivism is recapitulated in McDowell’s 
first response to Burge’s attack on disjunctivism:

We can express the idea with a disjunction: an appearance is either a case of things being thus 
and so in a way that is manifest to the subject or a case of its merely seeming to the subject 
that that is how things are. If we go on regarding appearances as elements in a subject’s inner 
world, this disjunctive conception embodies a recognizably non-Cartesian conception of that 
world. When a state of affairs that conforms to the first of those two disjuncts is an element in 
a subject’s inner world, how things are in that world cannot be fully specified without a com-
mitment as to how things are in the subject’s environment. On this conception, a subject’s 
inner world does not have the characteristic Cartesian independence from the outer world. 
(McDowell 2010, 244)
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the historical Descartes, but that the same “fundamental motivation” is 

shared between Cartesianism and functionalism.22

McDowell’s point of arrival also bears similarities to the view defended in 

this chapter, of mind embodied and embedded whose capacities are inher-

ently due to its belonging to a living body. There is acceptance of Searle’s 

biological approach, but rejection of the identification of mind with brain: 

“It is an insight on Searle’s part that intentionality is a biological phenom-

enon. But intentionality needs to be understood in the context of an organ-

ism’s life in the world. We cannot understand it, or even keep it in view, 

if we try to think of it in the context of the brain’s “life” inside the head” 

(McDowell 1998, 258, n57).

Like Haugeland, McDowell rejects the usual ways of placing boundaries 

on the cognitive, and he sees this as a direct implication of disjunctiv-

ism: “Allowing intrinsic object dependence, we have to set whatever liter-

ally spatial boundaries are in question outside the subject’s skin or skull. 

Cognitive space incorporates the relevant portions of the ‘external’ world” 

(McDowell 1998, 258). The striking difference between Haugeland’s and 

McDowell’s presentation of the view is that the former, but not the latter, 

makes ample reference to ideas and results from neuroscience and cognitive 

science. Indeed, McDowell (2013) asserts that his project is tangential to 

those activities.

This claim for the autonomy of philosophical studies of perception is what 

most seems to have exercised Burge (2005), and his attack on disjunctivism 

boils down to the charge that it has been refuted by empirical findings since 

the science requires, but disjunctivism denies, a “common factor” between 

subjectively indistinguishable veridical and nonveridical perceptual states. 

The controversy between Burge and McDowell is a collision of large-scale 

22. �“Now this intellectual impulse is gratified also in a modern way of purportedly bringing 
the mind within the scope of theory, in which the interiority of the inner realm is literally 
spatial; the autonomous explanatory states are in ultimate fact states of the nervous system, 
although, in order to protect the claim that the explanations they figure in are psychologi-
cal, they are envisaged as conceptualized by theories of mind in something like functionalist 
terms. This conception of mind shares what I have suggested we should regard as the fun-
damental motivation of the classically Cartesian conception; and I think this is much more 
significant than the difference between them.” (McDowell 1998, 244)

In section 10.4, I focused on the functionalist separation of mind from the mate-
rial brain. As McDowell points out, functionalism is equally committed to a division 
between the interior subject and the outside environment.
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philosophical worldviews, which Fish (2021) has compared to a clash of Kuh-

nian paradigms. But the treatment of the controversy as a matter of com-

peting research programs, analogous to scientific ones, neglects the crucial 

particularity of the case, which is that disjunctivism declines to define its 

explanatory objects in the way most conducive to scientific research. For this 

reason, there is more of a tension with science than McDowell admits—it 

goes beyond the situation of two parties holding orthogonal interests. Yet, as 

I will now argue, this does not invalidate disjunctivism.23

10.5.2  Inner States

Burge’s work displays much familiarity with the details of experimental 

and theoretical research on perception, especially vision. I do not have the 

space here to review the many facets of the theory that he has developed 

out of consideration of these results. My focus here is on the way that he 

follows the science, tacitly, in its idealizations. Insofar as Burge subscribes to 

a proximality principle, he inherits the idealization discussed at length in this 

chapter, that of mind and environment being separate systems interacting 

with each other in relatively minimal ways so that particular perceptual 

states can get an adequate characterization in terms of factors within the 

organism (internal to the system).24 This leads Burge to enforce the separa-

tion between mind and world, disallowing the interpenetration of inner 

and outer, which is exactly the move that disjunctivism is set up against.25

To see how this Cartesian idealization follows directly from Burge’s 

incorporation of the mainstream computational theory in perceptual sci-

ence, it is worth quoting him at length:

23.  I discuss the controversy at greater length elsewhere (Chirimuuta 2022c).
24.  Burge’s (2010, 61ff.) externalism or anti-individualism requires that certain gen-
eral relations hold between the causal structure of the environment and certain types 
of perceptual processes and states. However, these general conditions do not negate 
the proximality principle—the point that any particular perceptual state is to be char-
acterized by its internal (proximal) stimulus and relationships to other mental states.
25.  Again, this observation is consistent with Burge’s externalism or anti-individualism: 
“Anti-individualism per se does not claim that mental states are relations to the envi-
ronment, or that mental states are not in the head, or that entities in the environment 
are part of the mental state or of the state’s representational content. I reject these 
claims” (2005, 64; emphasis in original).
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The reason why the science’s basic principles cite a common factor is that the 

kinds of perceptual states that are formed—including conscious state kinds that 

are the perceivings and misperceivings by individuals—depend purely on (a) the 

registration of proximal stimulation, (b) the antecedent psychological and physi-

cal states of the individuals, and (c) the quasi-deterministic laws of transition 

between registration of proximal stimulation and the perceptual states that are 

formed. This is a statement of what I call the science’s “Proximality Principle”. . . . ​

Differences among the [subjectively indistinguishable veridical and nonveridical] 

cases are individuated by reference to the occasion-specific “distal inputs”—the 

causal chains that lead from the environment to the same registration of proxi-

mal stimulation. The shared factor is separable from the unshared factors. It is sepa-

rated by the science. Explanation of the formation of the perceptual states centers on that 

shared factor. (Burge 2011, 44, emphasis added)

The “proximal stimulation” is the first reception of a stimulus at a sensory 

organ. It is the product of the transduction of the stimulus into a pattern 

of activity in the nervous system. The proximal stimulus (e.g., the pattern 

of light falling on the retina) contrasts with the distal stimulus, the object 

in the world that one would ordinarily think of as the target of perception, 

such as the surface that the light was originally reflected from. When com-

paring the veridical and nonveridical cases, Burge assumes a clean division 

between factors that occur before and after this moment of transduction. 

The proximal stimulation serves as the absolute divide between factors that 

are essential (inside the perceiver, from the point of sensory transduction 

onward) and inessential (the distal ones) to the characterization of a per-

ceptual state, the explanation of how it is formed. Since the veridical and 

nonveridical cases differ only in their distal conditions, they are not differ

ent for the purposes of scientific explanation. The mistake of disjunctivism, 

as Burge sees it, is its neglect of the importance of this identity with respect 

to proximal factors.26

26.  In chapter 6 I argued that the positing of neural representations invokes a non-
proximal research heuristic, in which proximal, causal explanations are bypassed in 
order to attend to the relationship between the neural activation and the distal cause. 
This would seem to be inconsistent with the point here, which is that perceptual 
scientists (including sensory neuroscientists) are committed to a proximality principle. 
The apparent tension can be resolved once we appreciate that Burge’s proximality 
principle is just one instance of a very general constraint on causal explanations, 
which is that proximal causes screen off distal ones. (Schematically, if the more dis-
tant cause C brings about an effect E via a more proximal intermediary cause I, then 
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Haugeland’s essay contains an extended criticism of the assumption that 

sensory transduction marks the point of interface, the boundary between 

mind and world and that transduction in the opposite direction, from sym-

bolic motor command in the brain to muscle movement, is the point of 

interface between mind and body. The view that he urges us to take up 

is one in which the signals, codes, or symbols, which are the hallmark of 

the cognitive domain and are supposed to reside solely on the inside of 

the transduction boundary, make sense and are decodable only in the con-

text of bodily and worldly states. In other words, he rejects the supposition 

of “inner symbols” housed in the mind, which have their intentionality 

and meanings independently of happenings beyond the mind. This is how 

Haugeland makes the case for the radical dependency of the putative sym-

bolic realm on bodily context, denying in principle the clean division, at 

the point of transduction, between distal and proximal factors:

That some particular pulse pattern, on some occasion, should result in my typing 

an “A” depends on many contingencies, over and above just which pattern of 

pulses it happens to be. In the first place, it depends on the lengths of my fingers, 

the strengths and quicknesses of my muscles, the shapes of my joints, and the like. 

Of course, whatever else I might do with my hands, from typing the rest of the 

alphabet to tying my shoes, would likewise depend simultaneously on particular 

pulse patterns and these other concrete contingencies. But there need be no way to 

“factor out” the respective contributions of these different dependencies, such that 

contents could consistently be assigned to pulse patterns independent of which 

fingers they’re destined for. That is to say, there need be no way—even in princi

ple, and with God’s own microsurgery—to reconnect my neurons to anyone else’s 

fingers, such that I could reliably type or tie my shoes with them. (1998b, 225)

In a striking metaphor that conveys the way that the embodied mind 

theory rejects the division between what is cognitive (i.e., symbolic) and 

what is material (i.e., corporeal), Haugeland (1998b, 226) speaks of the body 

as a large and ever-changing encryption key for neural motor commands.

We have seen in chapters 5 and 7 that the default tendency of theoretical 

neuroscience has been to treat sensory and motor cortex responses as being 

fixed representations that always mean the same particular stimulus feature 

the effect that C has on E can be no different from that of any other distal cause that 
works via I.) The nonproximal, representation positing explanations under discus-
sion in chapter 6 do not actually depart from this general constraint; it is just that 
they decline to investigate the intermediate, more proximal causes.
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or muscle movement. We also saw that this is a simplifying assumption that 

led to elegant theories of visual and motor cortex, but when set against data 

collected in long-term, naturalistic situations, it becomes clear that it is a 

strong idealization—indeed, the phenomenon of representational drift is 

gathering increasing attention as something that might shake up the foun-

dations of theoretical neuroscience (Schoonover et al. 2021). The assump-

tion holds that whatever goes on more widely beyond the brain is irrelevant 

to the significance of neural activity: so long as a neuron is made to fire, 

however the firing is caused, it will always mean the same thing. The result 

is that all the malevolent neuroscientist needs to do is cause the same set of 

neural activations that would occur in ordinary life, and the disembodied 

mind will be perfectly deluded by its sensory array. In short, the idealiza-

tion of fixed representations implies that neural activations have meanings 

autonomously of anything beyond the brain, and this Cartesian idealiza-

tion lends itself to Cartesian skepticism. This is also the view encapsulated 

in Burge’s “proximality principle,” and which Haugeland rejects, precisely 

because he doubts that transduction provides a hard border between the 

brain and its surroundings.

The upshot is that the clash between Burge and McDowell is generated 

by Burge’s incorporation of a scientific framework that is itself in the busi-

ness of making the Cartesian idealization of the separability of inner and 

outer factors. Burge is correct to recognize a tension—an incompatibility 

even—between the scientific framework and a disjunctivism that rejects its 

core assumption. But he is wrong to uphold the authority of that frame-

work over independent philosophical inquiries. A philosophical position is 

not refuted because it is inconsistent with a thesis that is not a discovery, 

but a working assumption, of the empirical science. Burge (2011, 44) writes, 

“Science is our best guide to determining the basic natures of kinds that it 

describes and explains.” Accordingly, for him, any philosophical methodol-

ogy not closely attending to scientific results and deferential to its concep-

tual schemes is invalid. What Burge fails to appreciate is the way that the 

abstractions and idealizations of science—and, of course, he is aware that 

models depend on them—invalidate the authority of science within such 

inquiries into “natures” and “kinds.” These simplifications are introduced 

at least in part for pragmatic reasons, and as many examples in this book 

have shown, they involve departures, in the scientific representation, from 

how things actually are. A philosophical inquiry concerned, for example, 
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with “human nature” should not satisfy itself with the caricature given in a 

scientific model that must necessarily abstract away from the variety, com-

plications, and subjectivity that make human existence what it is. The same 

simplifying assumption may offer an innocuous convenience in a scien-

tific context, but cause an endless, exhausting headache once embedded 

in philosophical inquiry—as is the case with the idealization of the self 

contained mind.

10.6  Philosophy without Science, Science without Simplification?

Our mind has an irresistible tendency to consider that idea clearest which is most 

often useful to it.

—Henri Bergson (1903/1912, 53)

Haugeland writes as if the Cartesian idealization of the separable mind is 

dispensable in the science of brain and nervous system. He highlights the 

assumption that the interface between mind and the rest of creation is a 

narrowband one, and he takes it to be a straightforward hypothesis that 

stands open to empirical refutation. He argues that observations in neuro-

anatomy of the density of connections between brain and body confirm, 

rather, that the interface must be broadband; he asserts that the intensity 

of interaction between brain and body, body and environment, tell against 

the idea that these are component systems, in Simon’s sense. Thus science, 

by itself, can lead us beyond Cartesianism.

The worry left neglected is that even if the intermingling of systems and 

processes is an observable, empirical fact, it would not be feasible for sci-

ence to accept all these high-bandwidth interfaces at face value and attempt 

to represent them in its theories and models. Science needs to limit its 

objects of investigation to bite-sized proportions. Of course, there is a long-

standing and still active research tradition in embodied and embedded cog-

nitive science, which is to say that some scientists, sometimes willed on by 

philosophers, have tried to dispense with the Cartesian idealization. But 

it is telling that this is a minority approach and it has sometimes strug

gled to achieve recognition.27 The persistence with which it has been pur-

27.  The ecological psychology of J. J. Gibson is probably the most successful exam-
ple of work in the 4E (embodied, embedded, extended, and enactive) tradition, in 
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sued attests to its grounding in empirical fact, the various phenomena that 

tell against the separability of brain, mind, body, and environment. At the 

same time, this unwillingness to overlay those observations with idealizing 

distortions results in a loss of tractability and precise theoretical articula-

tion, in comparison with the mainstream computationalist approach.28

The picture we are left with is one in which science, bound to make cer-

tain simplifications, and philosophy, more free to dispense with them, take 

divergent paths of inquiry. But a concern should arise here about the claim 

that philosophy is any less reliant than science on simplifications in the con-

ceptual domain. We saw in the quotation from Cassirer in section 10.4 that it 

is possible to accuse metaphysical theorizing, which has its own standards of 

precision and determinacy, of the division of mind and body into separate, 

opposed tendencies. To the extent that philosophy, as much as science, needs 

to delimit topics and clarify its terms, then it too will be saddled with concep-

tual schemas that do not do justice to the complexity and interwovenness 

of life, experience, and embodiment. Indeed, so much of current analytic 

terms of wider impact in cognitive science, but Burge (2005, 70–71, n21) is dismissive 
about it. For more recent statements and defenses, see Chemero (2011), Di Paolo, 
Buhrmann, and Barandiaran (2017), and Varela, Thompson, and Rosch (1991/2016). 
I should also mention that there is scientific work under the 4E umbrella that is just 
as reliant on mathematical abstractions as standard computationalism—in partic
ular, work using dynamical systems theory. This raises (broadly) the same worries 
about abstraction away from biological complexity that come up with computation-
alist models.
28.  I should admit here that the conclusion to this chapter is a criticism of my former 
self. In my previous book (Chirimuuta 2015), I endorsed an ecological theory of color 
perception, but like Haugeland, I assumed that it would be a straightforward matter to 
defend it on both philosophical and scientific grounds. I now think this was a mistake, 
and that arguing for the thesis that colors are properties not locatable on either side 
of a firm perceiver-environment boundary must involve a deeper scrutinization of the 
assumptions and idealizations of mainstream perceptual science. In advocating for the 
independence of some philosophical forms of inquiry into perception, and implic-
itly criticizing naturalistic research in philosophy of mind for failing to take seriously 
the way that scientific abstractions and idealizations distort the issues at stake, I have 
arrived at a methodological position closer to McDowell’s than Haugeland’s. But this 
has come about through a much closer examination of the science than to be found 
in the nonnaturalistic literature in philosophy of mind. The autonomy of philosophy 
cannot be properly defended by treating it as a walled garden and keeping the context 
of scientific activity—which has a dominating effect on our intellectual culture—out 
of view.
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philosophy, with its reliance on cooked-up scenarios and toy models, reads 

like a transference into a nonempirical domain of the habit of thought that 

leads scientists to prefer controlled artificial conditions and unbelievable ide-

alizations over the indeterminacies of uncontrived situations, where quan-

tification is unavailable and the cataloguing of variables is incomplete. As 

Whitehead (1925/1967, 59) said, “You cannot think without abstractions,” 

and this holds for everyone, regardless of academic job description.

The point to appreciate here is that philosophy need not commit itself 

to the same abstractions as science. Since philosophy is not bound by the 

requirement to design conceptual tools that serve material purposes, like pre-

diction and manipulation of physiological effects, it has more latitude in how 

it goes about its abstractions, and it is also in a position to evaluate scientific 

abstractions by standards different from the instrumental ones of technosci-

ence. We see this in McDowell’s rejection of the Cartesian self-containment 

of mind for being a source of philosophical anxieties concerning the discon-

nection between mind and world, troubles to which scientists using that 

abstraction would generally be oblivious. Attunement to the wider implica-

tions of abstractions is one of the more valuable activities of philosophy, its 

role being that of the “critic of abstractions” (Whitehead 1925/1967, 59).

Thus, we should not accept that philosophy must be saddled with the 

same abstractions as science, not even given the shared history of these 

disciplines and common intellectual culture. The thing to remember, from 

chapter 8, is that science (unlike philosophy) has been conjoined with engi-

neering, and this deeply shapes the particular ways that it simplifies its 

subject matter. The quotation from Bergson at the beginning of this section 

notes a cozy association between the clarity and utility of a concept. There 

are very many ways that, with our concepts, we simplify and make complex 

things seem more clear. And there are divergent ends with which we put 

those concepts to use. Cartesian idealization cannot be disentangled from 

the Cartesian agenda, which is for science to make mortals “masters and 

possessors” of nature. More generally, the form of simplification that sci-

ence imposes is the one most conducive to the making of its object into a 

“manipulandum” (Merleau-Ponty 1961/2001, 289). These are ends that, as 

philosophers, we should at least reflect upon, and at times condemn.

The clash between Burge and McDowell involved a disagreement over 

whether philosophy could claim to have a subject matter of its own. McDow-

ell carves out for himself the notion of the state of a perceiver as opposed to 
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states of perceptual systems, whereas Burge finds all these terms incorporated 

into the field of investigation of perceptual science. And it is true that expla-

nations in that science occur as much at the person-level as the subpersonal 

one. However, if we appreciate that the divergent agendas of the two disci-

plines make available or unavailable different kinds of abstractions, we see 

that their notions and subject matter can indeed be different, even if they 

seem to be referring to the same thing. The philosopher, but not the scientist, 

has available a concept of personhood that takes persons to be embedded in 

an expansive network of circumstances and does not abstract away from sub-

jectivity, intersubjectivity, and the normativity that is an omnipresent aspect 

of this form of existence.

When theorizing minds and perception, with that notion of the personal 

in place, it is requisite that the self-contained Cartesian ideal be rejected. 

For their person-level accounts, however, perceptual scientists are better 

off abstracting away from all of those—to their ends—extraneous factors. 

All that matters for the achievement of their tasks is what can be clearly 

defined as either external and environmental or inner and proximal, so the 

kind of person-level explanation arising from perceptual science is com-

patible with Cartesianism but antithetical to a philosophy concerned with 

personhood as a complicated site of normativity and intersubjectivity. This 

is why the theory of mind embodied and embedded must be retained, even 

if it cannot come up with all the scientific credentials of other accounts.
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